Skip to main content

Research Repository

Advanced Search

Outputs (2)

Weighted ensemble of deep learning models based on comprehensive learning particle swarm optimization for medical image segmentation. (2021)
Presentation / Conference Contribution
DANG, T., NGUYEN, T.T., MORENO-GARCIA, C.F., ELYAN, E. and MCCALL, J. 2021. Weighted ensemble of deep learning models based on comprehensive learning particle swarm optimization for medical image segmentation. In Proceeding of 2021 IEEE (Institute of electrical and electronics engineers) Congress on evolutionary computation (CEC 2021), 28 June - 1 July 2021, Kraków, Poland : [virtual conference]. Piscataway: IEEE [online], pages 744-751. Available from: https://doi.org/10.1109/CEC45853.2021.9504929

In recent years, deep learning has rapidly become a method of choice for segmentation of medical images. Deep neural architectures such as UNet and FPN have achieved high performances on many medical datasets. However, medical image analysis algorith... Read More about Weighted ensemble of deep learning models based on comprehensive learning particle swarm optimization for medical image segmentation..

Two layer ensemble of deep learning models for medical image segmentation. [Preprint] (2021)
Preprint / Working Paper
DANG, T., NGUYEN, T.T., MCCALL, J., ELYAN, E. and MORENO-GARCÍA, C.F. 2021. Two layer ensemble of deep learning models for medical image segmentation. arXiv [online]. Available from: https://doi.org/10.48550/arXiv.2104.04809

In recent years, deep learning has rapidly become a method of choice for the segmentation of medical images. Deep Neural Network (DNN) architectures such as UNet have achieved state-of-the-art results on many medical datasets. To further improve the... Read More about Two layer ensemble of deep learning models for medical image segmentation. [Preprint].