Skip to main content

Research Repository

Advanced Search

Outputs (45)

Student interaction with a virtual learning environment: an empirical study of online engagement behaviours during and since the time of COVID-19. (2023)
Presentation / Conference Contribution
JOHNSTON, P., ZARB, M. and MORENO-GARCIA, C.F. 2023. Student interaction with a virtual learning environment: an empirical study of online engagement behaviours during and since the time of COVID-19. In Proceedings of the 2023 IEEE (Institute of Electrical and Electronics Engineers) Frontiers in education conference (FIE 2023),18-21 October 2023, College Station, TX, USA. Piscataway: IEEE [online], article number 10343048. Available from: https://doi.org/10.1109/fie58773.2023.10343048

This paper presents an experience report of online attendance and associated behavioural patterns during a module in the first complete semester undertaken fully online in the autumn of 2020, and the corresponding module deliveries in 2021 and 2022.... Read More about Student interaction with a virtual learning environment: an empirical study of online engagement behaviours during and since the time of COVID-19..

A data-driven decision support tool for offshore oil and gas decommissioning. (2021)
Journal Article
VUTTIPITTAYAMONGKOL, P., TUNG, A. and ELYAN, E. 2021. A data-driven decision support tool for offshore oil and gas decommissioning. IEEE access [online], 9, pages 137063-137082. Available from: https://doi.org/10.1109/ACCESS.2021.3117891

A growing number of oil and gas offshore infrastructures across the globe are approaching the end of their operational life. It is a major challenge for the industry to plan and make a decision on the decommissioning as the processes are resource exh... Read More about A data-driven decision support tool for offshore oil and gas decommissioning..

Harris Tweed: a glocal case study. (2021)
Journal Article
CROSS, K., STEED, J. and JIANG, Y. 2021. Harris Tweed: a global case study. Fashion, style and popular culture [online], 8(4), pages 475-494. Available from: https://doi.org/10.1386/fspc_00102_1

Fast and effectively disposable fashion has seen clothing reduced to transient items, worn for a short period of time then discarded. This has pushed down prices, moving textile and clothing production to low-cost labour countries and decimating the... Read More about Harris Tweed: a glocal case study..

A deep learning digitisation framework to mark up corrosion circuits in piping and instrumentation diagrams. (2021)
Presentation / Conference Contribution
TORAL, L., MORENO-GARCIA, C.F., ELYAN, E. and MEMON, S. 2021. A deep learning digitisation framework to mark up corrosion circuits in piping and instrumentation diagrams. In Barney Smith, E.H. and Pal, U. (eds.) Document analysis and recognition: ICDAR 2021 workshops, part II: proceedings of 16th International conference on document analysis and recognition 2021 (ICDAR 2021), 5-10 September 2021, Lausanne, Switzerland. Lecture notes in computer science, 12917. Cham: Springer [online], pages 268-276. Available from: https://doi.org/10.1007/978-3-030-86159-9_18

Corrosion circuit mark up in engineering drawings is one of the most crucial tasks performed by engineers. This process is currently done manually, which can result in errors and misinterpretations depending on the person assigned for the task. In th... Read More about A deep learning digitisation framework to mark up corrosion circuits in piping and instrumentation diagrams..

Artificial intelligence surgery: how do we get to autonomous actions in surgery? (2021)
Journal Article
GUMBS, A.A., FRIGERIO, I., SPOLVERATO, G., CRONER, R., ILLANES, A., CHOUILLARD, E. and ELYAN, E. 2021. Artificial intelligence surgery: how do we get to autonomous actions in surgery? Sensors [online], 21(16), article 5526. Available from: https://doi.org/10.3390/s21165526

Most surgeons are skeptical as to the feasibility of autonomous actions in surgery. Interestingly, many examples of autonomous actions already exist and have been around for years. Since the beginning of this millennium, the field of artificial intel... Read More about Artificial intelligence surgery: how do we get to autonomous actions in surgery?.

Interventions to treat obesity in Mexican children and adolescents: systematic review and meta-analysis. (2021)
Journal Article
ACEVES-MARTINS, A., LÓPEZ-CRUZ, L., GARCÍA-BOTELLO, M., GUTIERREZ-GÓMEZ, Y.Y. and MORENO-GARCÍA, C.F. 2022. Interventions to treat obesity in Mexican children and adolescents: systematic review and meta-analysis. Nutrition reviews [online], 80(3), pages 544-560. Available from: https://doi.org/10.1093/nutrit/nuab041

Context: Prevalence of overweight and obesity has been rising in the past 3 decades among Mexican children and adolescents. Objective: To systematically review experimental studies evaluating interventions to treat obesity in Mexican children and ado... Read More about Interventions to treat obesity in Mexican children and adolescents: systematic review and meta-analysis..

Class-decomposition and augmentation for imbalanced data sentiment analysis. (2021)
Presentation / Conference Contribution
MORENO-GARCIA, C.F., JAYNE, C. and ELYAN, E. 2021. Class-decomposition and augmentation for imbalanced data sentiment analysis. In Proceedings of 2021 International joint conference on neural networks (IJCNN 2021), 18-22 July 2021, [virtual conference]. Piscataway: IEEE [online], article 9533603. Available from: https://doi.org/10.1109/IJCNN52387.2021.9533603

Significant progress has been made in the area of text classification and natural language processing. However, like many other datasets from across different domains, text-based datasets may suffer from class-imbalance. This problem leads to model's... Read More about Class-decomposition and augmentation for imbalanced data sentiment analysis..

Weighted ensemble of deep learning models based on comprehensive learning particle swarm optimization for medical image segmentation. (2021)
Presentation / Conference Contribution
DANG, T., NGUYEN, T.T., MORENO-GARCIA, C.F., ELYAN, E. and MCCALL, J. 2021. Weighted ensemble of deep learning models based on comprehensive learning particle swarm optimization for medical image segmentation. In Proceeding of 2021 IEEE (Institute of electrical and electronics engineers) Congress on evolutionary computation (CEC 2021), 28 June - 1 July 2021, Kraków, Poland : [virtual conference]. Piscataway: IEEE [online], pages 744-751. Available from: https://doi.org/10.1109/CEC45853.2021.9504929

In recent years, deep learning has rapidly become a method of choice for segmentation of medical images. Deep neural architectures such as UNet and FPN have achieved high performances on many medical datasets. However, medical image analysis algorith... Read More about Weighted ensemble of deep learning models based on comprehensive learning particle swarm optimization for medical image segmentation..

Face detection with YOLO on edge. (2021)
Presentation / Conference Contribution
ALI-GOMBE, A., ELYAN, E., MORENO-GARCIA, C.F. and ZWIEGELAAR, J. 2021. Face detection with YOLO on edge. In Iliadis, L., Macintyre, J., Jayne, C. and Pimenidis, E. (eds.). Proceedings of the 22nd Enginering applications of neural networks conference (EANN2021), 25-27 June 2021, Halkidiki, Greece. Proceedings of the International Neural Networks Society (INNS), 3. Cham: Springer [online], pages 284-292. Available from: https://doi.org/10.1007/978-3-030-80568-5_24

Significant progress has been achieved in objects detection applications such as Face Detection. This mainly due to the latest development in deep learning-based approaches and especially in the computer vision domain. However, deploying deep-learnin... Read More about Face detection with YOLO on edge..

Image pre-processing and segmentation for real-time subsea corrosion inspection. (2021)
Presentation / Conference Contribution
PIRIE, C. and MORENO-GARCIA, C.F. 2021. Image pre-processing and segmentation for real-time subsea corrosion inspection. In Iliadis, L., Macintyre, J., Jayne, C. and Pimenidis, E. (eds.). Proceedings of the 22nd Engineering applications of neural networks conference (EANN2021), 25-27 June 2021, Halkidiki, Greece. Proceedings of the International Neural Networks Society (INNS), 3. Cham: Springer [online], pages 220-231. Available from: https://doi.org/10.1007/978-3-030-80568-5_19

Inspection engineering is a highly important field in the Oil & Gas sector for analysing the health of offshore assets. Corrosion, a naturally occurring phenomenon, arises as a result of a chemical reaction between a metal and its environment, causin... Read More about Image pre-processing and segmentation for real-time subsea corrosion inspection..

A review of state-of-the-art in face presentation attack detection: from early development to advanced deep learning and multi-modal fusion methods. (2021)
Journal Article
ABDULLAKUTTY, F., ELYAN, E. and JOHNSTON, P. 2021. A review of state-of-the-art in face presentation attack detection: from early development to advanced deep learning and multi-modal fusion methods. Information fusion [online], 75, pages 55-69. Available from: https://doi.org/10.1016/j.inffus.2021.04.015

Face Recognition is considered one of the most common biometric solutions these days and is widely used across a range of devices for various security purposes. The performance of FR systems has improved by orders of magnitude over the past decade. T... Read More about A review of state-of-the-art in face presentation attack detection: from early development to advanced deep learning and multi-modal fusion methods..

Burst detection-based selective classifier resetting. (2021)
Journal Article
WARES, S., ISAACS, J. and ELYAN, E. 2021. Burst detection-based selective classifier resetting. Journal of information and knowledge management [online], 20(2), article 2150027. Available from: https://doi.org/10.1142/S0219649221500271

Concept drift detection algorithms have historically been faithful to the aged architecture of forcefully resetting the base classifiers for each detected drift. This approach prevents underlying classifiers becoming outdated as the distribution of a... Read More about Burst detection-based selective classifier resetting..

Two layer ensemble of deep learning models for medical image segmentation. [Preprint] (2021)
Preprint / Working Paper
DANG, T., NGUYEN, T.T., MCCALL, J., ELYAN, E. and MORENO-GARCÍA, C.F. 2021. Two layer ensemble of deep learning models for medical image segmentation. arXiv [online]. Available from: https://doi.org/10.48550/arXiv.2104.04809

In recent years, deep learning has rapidly become a method of choice for the segmentation of medical images. Deep Neural Network (DNN) architectures such as UNet have achieved state-of-the-art results on many medical datasets. To further improve the... Read More about Two layer ensemble of deep learning models for medical image segmentation. [Preprint].

Object detection, distributed cloud computing and parallelization techniques for autonomous driving systems. (2021)
Journal Article
MEDINA, E.C.G., ESPITIA, V.M.V., SILVA, D.C., DE LAS CUEVAS, S.F.R., HIRATA, M.P., CHEN, A.Z., GONZÁLEZ, J.A.G., BUSTAMANTE-BELLO, R. and MORENO-GARCÍA, C.F. 2021. Object detection, distributed cloud computing and parallelization techniques for autonomous driving systems. Applied sciences [online], 11(7), article 2925. Available from: https://doi.org/10.3390/app11072925

Autonomous vehicles are increasingly becoming a necessary trend towards building the smart cities of the future. Numerous proposals have been presented in recent years to tackle particular aspects of the working pipeline towards creating a functional... Read More about Object detection, distributed cloud computing and parallelization techniques for autonomous driving systems..

An IoT based industry 4.0 architecture for integration of design and manufacturing systems. (2020)
Presentation / Conference Contribution
ANBALAGAN, A. and MORENO-GARCIA, C.F. 2021. An IoT based industry 4.0 architecture for integration of design and manufacturing systems. Materials today: proceedings [online], 46(17): proceedings of 3rd International conference on materials, manufacturing and modelling 2021 (ICMMM 2021), 19-21 March 2021, [virtual conference], pages 7135-7142. Available from: https://doi.org/10.1016/j.matpr.2020.11.196

This paper proposes an Internet of Things (IoT) based 5-stage Industry 4.0 architecture to integrate the design and manufacturing systems in a Cyber Physical Environment (CPE). It considers the transfer of design and manufacturing systems data throug... Read More about An IoT based industry 4.0 architecture for integration of design and manufacturing systems..

A pipeline framework for robot maze navigation using computer vision, path planning and communication protocols. (2020)
Presentation / Conference Contribution
RODRIGUEZ-TIRADO, A., MAGALLAN-RAMIREZ, D., MARTINEZ-AGUILAR, J.D., MORENO-GARCIA, C.F., BALDERAS, D. and LOPEZ-CAUDANA, E. 2020. A pipeline framework for robot maze navigation using computer vision, path planning and communication protocols. In Proceedings of 13th Developments in eSystems engineering international conference 2020 (DeSe 2020), 13-17 December 2020, [virtual conference]. Piscataway: IEEE [online], pages 152-157. Available from: https://doi.org/10.1109/DeSE51703.2020.9450731

Maze navigation is a recurring challenge in robotics competitions, where the aim is to design a strategy for one or several entities to traverse the optimal path in a fast and efficient way. To do so, numerous alternatives exist, relying on different... Read More about A pipeline framework for robot maze navigation using computer vision, path planning and communication protocols..

On the class overlap problem in imbalanced data classification. (2020)
Journal Article
VUTTIPITTAYAMONGKOL, P., ELYAN, E. and PETROVSKI, A. 2021. On the class overlap problem in imbalanced data classification. Knowledge-based systems [online], 212, article number 106631. Available from: https://doi.org/10.1016/j.knosys.2020.106631

Class imbalance is an active research area in the machine learning community. However, existing and recent literature showed that class overlap had a higher negative impact on the performance of learning algorithms. This paper provides detailed criti... Read More about On the class overlap problem in imbalanced data classification..

Applying acceptance requirements to requirements modeling tools via gamification: a case study on privacy and security. (2020)
Presentation / Conference Contribution
PIRAS, L., CALABRESE, F. and GIORGINI, P. 2020. Applying acceptance requirements to requirements modeling tools via gamification: a case study on privacy and security. In Grabis, J. and Bork, D. (eds.) The practice of enterprise modeling: proceedings of 13th International Federation for Information Processing (IFIP) Practice of enterprise modelling working conference 2020 (Poem 2020), 25-27 November 2020, Riga, Latvia. Lecture notes in business information processing, 400. Cham: Springer [online], pages 366-376. Available from: https://doi.org/10.1007/978-3-030-63479-7_25

Requirements elicitation, analysis and modeling are critical activities for software success. However, software systems are increasingly complex, harder to develop due to an ever-growing number of requirements from numerous and heterogeneous stakehol... Read More about Applying acceptance requirements to requirements modeling tools via gamification: a case study on privacy and security..

DEFeND DSM: a data scope management service for model-based privacy by design GDPR compliance. (2020)
Presentation / Conference Contribution
PIRAS, L., AL-OBEIDALLAH, M.G., PAVLIDIS, M., MOURATIDIS, H., TSOHOU, A., MAGKOS, E., PRAITANO, A., IODICE, A. and CRESPO, B. G.-N. 2020. DEFeND DSM: a data scope management service for model-based privacy by design GDPR compliance. In Gritzalis, S., Weippl, E.R., Kotsis, G., Tjoa, A.M. and Khalil, I. (eds.) Trust, privacy and security in digital business: proceedings of 17th Trust and privacy in digital business international conference 2020 (TrustBus 2020), 14-17 September 2020, Bratislava, Slovakia. Lecture notes in computer science, 12395. Cham: Springer [online], pages 186-201. Available from: https://doi.org/10.1007/978-3-030-58986-8_13

The introduction of the European General Data Protection Regulation (GDPR) has brought significant benefits to citizens, but it has also created challenges for organisations, which are facing with difficulties interpreting it and properly applying it... Read More about DEFeND DSM: a data scope management service for model-based privacy by design GDPR compliance..

Response to discussion on “Improved overlap-based undersampling for imbalanced dataset classification with application to epilepsy and Parkinson’s disease.” (2020)
Journal Article
VUTTIPITTAYAMONGKOL, P. and ELYAN, E. 2020. Response to discussion on “Improved overlap-based undersampling for imbalanced dataset classification with application to epilepsy and Parkinson’s disease.”. International journal of neural systems [online], 30(9), article ID 2075002. Available from: https://doi.org/10.1142/s0129065720750027

In the paper 'Improved Overlap-Based Undersampling for Imbalanced Dataset Classification with Application to Epilepsy and Parkinson's Disease', the authors introduced two new methods that address the class overlap problem in imbalanced datasets. The... Read More about Response to discussion on “Improved overlap-based undersampling for imbalanced dataset classification with application to epilepsy and Parkinson’s disease.”.