Skip to main content

Research Repository

Advanced Search

Outputs (5)

A deep learning digitisation framework to mark up corrosion circuits in piping and instrumentation diagrams. (2021)
Presentation / Conference Contribution
TORAL, L., MORENO-GARCIA, C.F., ELYAN, E. and MEMON, S. 2021. A deep learning digitisation framework to mark up corrosion circuits in piping and instrumentation diagrams. In Barney Smith, E.H. and Pal, U. (eds.) Document analysis and recognition: ICDAR 2021 workshops, part II: proceedings of 16th International conference on document analysis and recognition 2021 (ICDAR 2021), 5-10 September 2021, Lausanne, Switzerland. Lecture notes in computer science, 12917. Cham: Springer [online], pages 268-276. Available from: https://doi.org/10.1007/978-3-030-86159-9_18

Corrosion circuit mark up in engineering drawings is one of the most crucial tasks performed by engineers. This process is currently done manually, which can result in errors and misinterpretations depending on the person assigned for the task. In th... Read More about A deep learning digitisation framework to mark up corrosion circuits in piping and instrumentation diagrams..

Class-decomposition and augmentation for imbalanced data sentiment analysis. (2021)
Presentation / Conference Contribution
MORENO-GARCIA, C.F., JAYNE, C. and ELYAN, E. 2021. Class-decomposition and augmentation for imbalanced data sentiment analysis. In Proceedings of 2021 International joint conference on neural networks (IJCNN 2021), 18-22 July 2021, [virtual conference]. Piscataway: IEEE [online], article 9533603. Available from: https://doi.org/10.1109/IJCNN52387.2021.9533603

Significant progress has been made in the area of text classification and natural language processing. However, like many other datasets from across different domains, text-based datasets may suffer from class-imbalance. This problem leads to model's... Read More about Class-decomposition and augmentation for imbalanced data sentiment analysis..

Image pre-processing and segmentation for real-time subsea corrosion inspection. (2021)
Presentation / Conference Contribution
PIRIE, C. and MORENO-GARCIA, C.F. 2021. Image pre-processing and segmentation for real-time subsea corrosion inspection. In Iliadis, L., Macintyre, J., Jayne, C. and Pimenidis, E. (eds.). Proceedings of the 22nd Engineering applications of neural networks conference (EANN2021), 25-27 June 2021, Halkidiki, Greece. Proceedings of the International Neural Networks Society (INNS), 3. Cham: Springer [online], pages 220-231. Available from: https://doi.org/10.1007/978-3-030-80568-5_19

Inspection engineering is a highly important field in the Oil & Gas sector for analysing the health of offshore assets. Corrosion, a naturally occurring phenomenon, arises as a result of a chemical reaction between a metal and its environment, causin... Read More about Image pre-processing and segmentation for real-time subsea corrosion inspection..

Weighted ensemble of deep learning models based on comprehensive learning particle swarm optimization for medical image segmentation. (2021)
Presentation / Conference Contribution
DANG, T., NGUYEN, T.T., MORENO-GARCIA, C.F., ELYAN, E. and MCCALL, J. 2021. Weighted ensemble of deep learning models based on comprehensive learning particle swarm optimization for medical image segmentation. In Proceeding of 2021 IEEE (Institute of electrical and electronics engineers) Congress on evolutionary computation (CEC 2021), 28 June - 1 July 2021, Kraków, Poland : [virtual conference]. Piscataway: IEEE [online], pages 744-751. Available from: https://doi.org/10.1109/CEC45853.2021.9504929

In recent years, deep learning has rapidly become a method of choice for segmentation of medical images. Deep neural architectures such as UNet and FPN have achieved high performances on many medical datasets. However, medical image analysis algorith... Read More about Weighted ensemble of deep learning models based on comprehensive learning particle swarm optimization for medical image segmentation..

Object detection, distributed cloud computing and parallelization techniques for autonomous driving systems. (2021)
Journal Article
MEDINA, E.C.G., ESPITIA, V.M.V., SILVA, D.C., DE LAS CUEVAS, S.F.R., HIRATA, M.P., CHEN, A.Z., GONZÁLEZ, J.A.G., BUSTAMANTE-BELLO, R. and MORENO-GARCÍA, C.F. 2021. Object detection, distributed cloud computing and parallelization techniques for autonomous driving systems. Applied sciences [online], 11(7), article 2925. Available from: https://doi.org/10.3390/app11072925

Autonomous vehicles are increasingly becoming a necessary trend towards building the smart cities of the future. Numerous proposals have been presented in recent years to tackle particular aspects of the working pipeline towards creating a functional... Read More about Object detection, distributed cloud computing and parallelization techniques for autonomous driving systems..