Aizhu Zhang
Coastal wetland mapping with sentinel-2 MSI imagery based on gravitational optimized multilayer perceptron and morphological attribute profiles.
Zhang, Aizhu; Sun, Genyun; Ma, Ping; Jia, Xiuping; Ren, Jinchang; Huang, Hui; Zhang, Xuming
Authors
Genyun Sun
Ping Ma
Xiuping Jia
Professor Jinchang Ren j.ren@rgu.ac.uk
Professor of Computing Science
Hui Huang
Xuming Zhang
Abstract
Coastal wetland mapping plays an essential role in monitoring climate change, the hydrological cycle, and water resources. In this study, a novel classification framework based on the gravitational optimized multilayer perceptron classifier and extended multi-attribute profiles (EMAPs) is presented for coastal wetland mapping using Sentinel-2 multispectral instrument (MSI) imagery. In the proposed method, the morphological attribute profiles (APs) are firstly extracted using four attribute filters based on the characteristics of wetlands in each band from Sentinel-2 imagery. These APs form a set of EMAPs which comprehensively represent the irregular wetland objects in multiscale and multilevel. The EMAPs and original spectral features are then classified with a new multilayer perceptron (MLP) classifier whose parameters are optimized by a stability-constrained adaptive alpha for a gravitational search algorithm. The performance of the proposed method was investigated using Sentinel-2 MSI images of two coastal wetlands, i.e., the Jiaozhou Bay and the Yellow River Delta in Shandong province of eastern China. Comparisons with four other classifiers through visual inspection and quantitative evaluation verified the superiority of the proposed method. Furthermore, the effectiveness of different APs in EMAPs were also validated. By combining the developed EMAPs features and novel MLP classifier, complicated wetland types with high within-class variability and low between-class disparity were effectively discriminated. The superior performance of the proposed framework makes it available and preferable for the mapping of complicated coastal wetlands using Sentinel-2 data and other similar optical imagery.
Citation
ZHANG, A., SUN, G., MA, P., JIA, X., REN, J., HUANG, H. and ZHANG, X. 2019. Coastal wetland mapping with sentinel-2 MSI imagery based on gravitational optimized multilayer perceptron and morphological attribute profiles. Remote sensing [online], 11(8), article 952. Available from: https://doi.org/10.3390/rs11080952
Journal Article Type | Article |
---|---|
Acceptance Date | Apr 18, 2019 |
Online Publication Date | Apr 20, 2019 |
Publication Date | Apr 30, 2019 |
Deposit Date | May 2, 2022 |
Publicly Available Date | May 2, 2022 |
Journal | Remote Sensing |
Electronic ISSN | 2072-4292 |
Publisher | MDPI |
Peer Reviewed | Peer Reviewed |
Volume | 11 |
Issue | 8 |
Article Number | 952 |
DOI | https://doi.org/10.3390/rs11080952 |
Keywords | Image classification; Coastal wetland; Morphological attribute profiles; Multilayer perceptron; Gravitational search algorithm |
Public URL | https://rgu-repository.worktribe.com/output/1085680 |
Files
ZHANG 2019 Coastal wetland mapping (VOR)
(5.4 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by/4.0/
Copyright Statement
© 2019 by the authors. Licensee MDPI, Basel, Switzerland.
You might also like
Two-click based fast small object annotation in remote sensing images.
(2024)
Journal Article
Prompting-to-distill semantic knowledge for few-shot learning.
(2024)
Journal Article
Detection-driven exposure-correction network for nighttime drone-view object detection.
(2024)
Journal Article
Feature aggregation and region-aware learning for detection of splicing forgery.
(2024)
Journal Article
Downloadable Citations
About OpenAIR@RGU
Administrator e-mail: publications@rgu.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search