Skip to main content

Research Repository

Advanced Search

Chemical detection of explosives in soil for locating buried landmines.

Karnik, Shruti; Prabhu, Radhakrishna

Authors

Shruti Karnik



Contributors

H. Bouma
Editor

R. J. Stokes
Editor

Y. Yitzhaky
Editor

Abstract

Trinitrotoluene (TNT) is a highly explosive nitroaromatic compound that is used for military and terrorist activities such as the development of improvised explosive devices (IEDs), landmines and is the main charge or explosive in most of the anti-personal and anti-vehicle mines. Different chemicals/ contaminants associated with TNT in soils near buried land mines comprise the microbial transformation products of TNT (2-amino-4,6-dinitrotoluene [2-Am-DNT] and 4-amino-2,6-dinitrotoluene [4-Am-DNT]), manufacturing impurities of TNT (2,4-DNT, 2,6-DNT, and 1,3-DNB), and TNT. Time, cost, and casualties associated with demining have necessitated the demand for improved detection techniques with reduced false positives by directly detecting the explosive material, rather than casing material of mines. Different analytical methods used to detect trace level of explosives in soil include ion mobility mass spectrometry, gas chromatography-mass spectrometry (GC-MS), and liquid chromatography-mass spectrometry (LC-MS) that require samples to be collected from hazardous sites to laboratories. This is extremely unsafe, time consuming, involve large and expensive instrumentation cost and specially trained staff. Thus, detecting chemical signatures of these nitroaromatics in soil infected with these chemicals due to leaked TNT mines can provide location of landmines/ landmine prone zones to aide humanitarian demining process. This paper illustrates soil analysis for explosives and selected contaminants by Raman spectroscopy as a chemical, nondestructive, remote sensing method. As with advancement of Raman-based standoff detection techniques, field-portable instruments and UAV deployable probes, this technique can be effectively employed in detecting buried landmines based on specific chemical signatures of target analyte. In this present study, TNT-based nitroaromatic was assessed in contaminated soil samples using Raman spectroscopy, where uncontaminated soil was used as background and matrix for spiking target contaminants at different concentrations.

Citation

KARNIK, S. and PRABHU, R. 2021. Chemical detection of explosives in soil for locating buried landmines. In Bouma, H., Prabhu, R., Stokes, R.J. and Yitzhaky, Y. (eds.) Proceedings of the 5th Counterterrorism, crime fighting, forensics, and surveillance technologies conference, part of the 2021 SPIE Security + defence conference, 13-17 September 2021, [virtual conference]. Proceedings of SPIE, 11869. Bellingham, WA: SPIE [online], article ID 118690A. Available from: https://doi.org/10.1117/12.2601741

Conference Name 5th Counterterrorism, crime fighting, forensics, and surveillance technologies conference, part of the 2021 SPIE Security + defence conference
Conference Location [virtual conference]
Start Date Sep 13, 2021
End Date Sep 17, 2021
Acceptance Date May 31, 2021
Online Publication Date Sep 12, 2021
Publication Date Oct 5, 2021
Deposit Date Dec 13, 2021
Publicly Available Date Mar 28, 2024
Publisher Society of Photo-optical Instrumentation Engineers
Series Title Proceedings of SPIE
Series Number 11869
Series ISSN 0277-786X ; 1996-756X
Book Title Counterterrorism, crime fighting, forensics and surveillance technologies V
ISBN 9781510645820
DOI https://doi.org/10.1117/12.2601741
Keywords Landmines; Nitroaromatic explosives; Raman spectroscopy; Remote sensing; TNT
Public URL https://rgu-repository.worktribe.com/output/1534257

Files

KARNIK 2021 Chemical detection of explosives (557 Kb)
PDF

Copyright Statement
© SPIE




You might also like



Downloadable Citations