Shunli Wang
An improved sliding window: long short-term memory modeling method for real-world capacity estimation of lithium-ion batteries considering strong random charging characteristics.
Wang, Shunli; Takyi-Aninakwa, Paul; Jin, Siyu; Liu, Ke; Fernandez, Carlos
Authors
Abstract
Capacity estimation plays a significant role in ensuring safe and acceptable energy delivery, especially under real-time complex working conditions for whole-life-cycle lithium-ion batteries. For high-precision and robust capacity estimation, an improved sliding window-long short-term memory (SW-LSTM) modeling method is proposed by introducing multiple time-scale charging characteristic factors. The optimized feature information set is extracted by constructing an optimized differential integration-moving average autoregressive (DI-MAA) model, which is introduced as the input matrices of the whole-life-cycle capacity estimation model. With the constructed DI-MAA model, the relevant features are effectively extracted, overcoming the data limitation problem of the long-term dependence capacity estimation. For the experimental test, the maximum capacity estimation error is 3.56%, and the average relative error is 0.032 under the complex Beijing bus dynamic stress test working condition. The proposed SW-LSTM estimation model with optimized DI-MAA-based data pre-processing treatment has high stability and robust advantages, serving an effective safety assurance for lithium-ion batteries with real-world complex working condition adaptation advantages.
Citation
WANG, S., TAKYI-ANINAKWA, P., JIN, S., LIU, K. and FERNANDEZ, C. 2023. An improved sliding window: long short-term memory modeling method for real-world capacity estimation of lithium-ion batteries considering strong random charging characteristics. Journal of energy storage [online], 70, article 108038. Available from: https://doi.org/10.1016/j.est.2023.108038
Journal Article Type | Article |
---|---|
Acceptance Date | Jun 10, 2023 |
Online Publication Date | Jun 17, 2023 |
Publication Date | Oct 15, 2023 |
Deposit Date | Jun 19, 2023 |
Publicly Available Date | Jun 18, 2024 |
Journal | Journal of energy storage |
Print ISSN | 2352-152X |
Electronic ISSN | 2352-1538 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 70 |
Article Number | 108038 |
DOI | https://doi.org/10.1016/j.est.2023.108038 |
Keywords | Lithium-ion battery; Sliding window; Long short-term memory; Capacity estimation; Differential intergration; Moving average autoregressive model; Multiple time-scale factors |
Public URL | https://rgu-repository.worktribe.com/output/1992884 |
Files
WANG 2023 An improved sliding window (AAM)
(1.7 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by-nc-nd/4.0/
You might also like
Spectrophotometric and chromatographic analysis of creatine: creatinine crystals in urine.
(2024)
Journal Article
Downloadable Citations
About OpenAIR@RGU
Administrator e-mail: publications@rgu.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search