Reginald Ankrah
Introducing the dynamic customer location-allocation problem.
Ankrah, Reginald; Lacroix, Benjamin; McCall, John; Hardwick, Andrew; Conway, Anthony
Authors
Benjamin Lacroix
Professor John McCall j.mccall@rgu.ac.uk
Interim Director
Andrew Hardwick
Anthony Conway
Abstract
In this paper, we introduce a new stochastic Location-Allocation Problem which assumes the movement of customers over time. We call this new problem Dynamic Customer Location-Allocation Problem (DC-LAP). The problem is based on the idea that customers will change locations over a defined horizon and these changes have to be taken into account when establishing facilities to service customers demands. We generate 1440 problem instances by varying the problem parameters of movement rate which determines the possible number of times a customer will change locations over the defined period, the number of facilities and the number of customers. We propose to analyse the characteristics of the instances generated by testing a search algorithm using the stochastic dynamic evaluation (based on the replication of customer movement scenarios) and a deterministic static evaluation (based on the assumption that customer will not move over time). We show that the dynamic approach obtains globally better results, but the performances are highly related to the parameters of the problem. Moreover, the dynamic approach involves a significantly high computational overhead.
Citation
ANKRAH, R., LACROIX, B., MCCALL, J., HARDWICK, A. and CONWAY, A. 2019. Introducing the dynamic customer location-allocation problem. In Proceedings of the 2019 Institute of Electrical and Electronics Engineers (IEEE) Congress on evolutionary computation (IEEE CEC 2019), 10-13 June 2019, Wellington, NZ. Piscataway: IEEE [online], pages 3157-3164. Available from: https://doi.org/10.1109/CEC.2019.8790150
Conference Name | 2019 Institute of Electrical and Electronics Engineers (IEEE) Congress on evolutionary computation (IEEE CEC 2019) |
---|---|
Conference Location | Wellington, NZ |
Start Date | Jun 10, 2019 |
End Date | Jun 13, 2019 |
Acceptance Date | Mar 7, 2019 |
Online Publication Date | Aug 8, 2019 |
Publication Date | Aug 8, 2019 |
Deposit Date | Apr 15, 2019 |
Publicly Available Date | Jun 20, 2019 |
Publisher | IEEE Institute of Electrical and Electronics Engineers |
Pages | 3157-3164 |
ISBN | 9781728121543 |
DOI | https://doi.org/10.1109/CEC.2019.8790150 |
Keywords | Dynamic customer location-allocation problem; Static approach; Dynamic approach; Population-based incremental learning algorithm; Simulation model |
Public URL | https://rgu-repository.worktribe.com/output/236895 |
Files
ANKRAH 2019 Introducing the dynamic
(1.9 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by-nc/4.0/
You might also like
Racing strategy for the dynamic-customer location-allocation problem.
(2020)
Conference Proceeding
A holistic metric approach to solving the dynamic location-allocation problem.
(2018)
Conference Proceeding
Performance analysis of GA and PBIL variants for real-world location-allocation problems.
(2018)
Conference Proceeding
Ensemble of deep learning models with surrogate-based optimization for medical image segmentation.
(2022)
Conference Proceeding