Skip to main content

Research Repository

Advanced Search

Novel bisnaphthalimidopropyl (BNIPs) derivatives as anticancer compounds targeting DNA in human breast cancer cells.

Kopsida, Maria; Barron, Gemma A.; Bermano, Giovanna; Kong Thoo Lin, Paul; Goua, Marie


Maria Kopsida


Bisnaphthalimidopropyl (BNIP) derivatives are a family of compounds that exert anti-cancer activities in vitro and, according to previous studies, variations in the linker sequence have increased their DNA binding and cytotoxic activities. By modifying the linker sequence of bisnaphthalimidopropyl diaminodicyclohexylmethane (BNIPDaCHM), a previously synthesised BNIP derivative with anti-cancer properties, three novel BNIP derivatives were designed. Bisnaphthalimidopropyl-piperidylpropane (BNIPPiProp), a structural isomer of BNIPDaCHM, bisnaphthalimidopropyl ethylenedipiperidine dihydrobromide (BNIPPiEth), an isoform of BNIPDaCHM with a shorter linker chain, and (trans(trans))-bisnaphthalimidopropyl diaminodicyclohexylmethane (trans,trans-BNIPDaCHM), a stereoisomer of BNIPDaCHM, were successfully synthesised (72.3-29.5% yield) and characterised by nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS). Competitive displacement of ethidium bromide (EtBr) and UV binding studies were used to study the interactions of BNIP derivatives with Calf Thymus DNA. The cytotoxicity of these derivatives was assessed against human breast cancer MDA-MB-231 and SKBR-3 cells by MTT assay. Propidium iodide (PI) flow cytometry was conducted in order to evaluate the cellular DNA content in both breast cancer cell lines before and after treatment with BNIPs. The results showed that all novel BNIPs exhibit strong DNA binding properties in vitro, and strong cytotoxicity, with IC50 values in the range of 0.2-3.3 μM after 24 hours drug treatment. Two of the novel BNIP derivatives, BNIPPiEth and trans,trans-BNIPDaCHM, exhibited greater cytotoxicity against the two breast cancer cell lines studied, compared to BNIPDaCHM. By synthesising enantiopures and reducing the length of the linker sequence, the cytotoxicity of the BNIP derivatives was significantly improved compared to BNIPDaCHM, while maintaining DNA binding and bis-intercalating properties. In addition, cell cycle studies indicated that trans,trans-BNIPDaCHM, the most cytotoxic BNIP derivative, induced sub-G1 cell cycle arrest, indicative of apoptotic cell death. Based on these findings, further investigation is under way to assess the potential efficacy of trans,trans-BNIPDaCHM and BNIPPiEth in treating human breast cancer.


KOPSIDA, M., BARRON, G.A. BERMANO, G., KONG THOO LIN, P. and GOUA, M. 2016. Novel bisnaphthalimidopropyl (BNIPs) derivatives as anticancer compounds targeting DNA in human breast cancer cells. Organic and biomolecular chemistry [online], 14(41), pages 9780-9789. Available from:

Journal Article Type Article
Acceptance Date Sep 21, 2016
Online Publication Date Sep 21, 2016
Publication Date Nov 7, 2016
Deposit Date Sep 27, 2016
Publicly Available Date Sep 27, 2016
Journal Organic and biomolecular chemistry
Print ISSN 1477-0520
Electronic ISSN 1477-0539
Publisher Royal Society of Chemistry
Peer Reviewed Peer Reviewed
Volume 14
Issue 41
Pages 9780-9789
Keywords Bisnaphthalimides; DNA binding; Cytotoxicity; Cell cycle
Public URL
Additional Information The accompanying file contains supplementary material and can be found at the end of the full text article (pages 11-17).


You might also like

Downloadable Citations