Skip to main content

Research Repository

Advanced Search

Effective and efficient estimation of distribution algorithms for permutation and scheduling problems.

Ayodele, Mayowa

Authors

Mayowa Ayodele



Contributors

Olivier Regnier-Coudert
Supervisor

Abstract

Estimation of Distribution Algorithm (EDA) is a branch of evolutionary computation that learn a probabilistic model of good solutions. Probabilistic models are used to represent relationships between solution variables which may give useful, human-understandable insights into real-world problems. Also, developing an effective PM has been shown to significantly reduce function evaluations needed to reach good solutions. This is also useful for real-world problems because their representations are often complex needing more computation to arrive at good solutions. In particular, many real-world problems are naturally represented as permutations and have expensive evaluation functions. EDAs can, however, be computationally expensive when models are too complex. There has therefore been much recent work on developing suitable EDAs for permutation representation. EDAs can now produce state-of-the-art performance on some permutation benchmark problems. However, models are still complex and computationally expensive making them hard to apply to real-world problems. This study investigates some limitations of EDAs in solving permutation and scheduling problems. The focus of this thesis is on addressing redundancies in the Random Key representation, preserving diversity in EDA, simplifying the complexity attributed to the use of multiple local improvement procedures and transferring knowledge from solving a benchmark project scheduling problem to a similar real-world problem. In this thesis, we achieve state-of-the-art performance on the Permutation Flowshop Scheduling Problem benchmarks as well as significantly reducing both the computational effort required to build the probabilistic model and the number of function evaluations. We also achieve competitive results on project scheduling benchmarks. Methods adapted for solving a real-world project scheduling problem presents significant improvements.

Citation

AYODELE, M. 2018. Effective and efficient estimation of distribution algorithms for permutation and scheduling problems. Robert Gordon University, PhD thesis.

Thesis Type Thesis
Deposit Date Aug 31, 2018
Publicly Available Date Aug 31, 2018
Keywords Estimation of distribution algorithm; Probabilistic model; Random key; Genetic algorithm; Real world project scheduling problem; Optimisation; Gaussian distribution; Permutation flowshop scheduling problem
Public URL http://hdl.handle.net/10059/3102
Contract Date Aug 31, 2018
Award Date May 31, 2018

Files




You might also like



Downloadable Citations