Dr Taimoor Asim t.asim@rgu.ac.uk
Associate Professor
Multistage severe service control valves are extensively used in various energy systems, such as oil & gas, nuclear etc. The primary purpose of such valves is to control the amount of fluid flow passing through them under extreme pressure changes. As opposed to the conventional valves (butterfly, gate etc.), control valves are often installed in energy systems with geometrically complex trims, comprising of various geometrical features, formed by a complex arrangement of cylindrical arrays. The pressure within the trim varies in controlled steps and hence, cavitation resistance can be embedded in the trim through improved design process for the trim for severe service applications in energy systems. The flow characteristics within a control valve are quite complex, owing to complex geometrical features inherent in such designs, which makes it extremely difficult to isolate and quantify contribution of these features on the flow characteristics. One of the most important design parameters of such trims is the flow coefficient (also known as flow capacity) of the trim which depends on the geometrical features of the trim. The design of valves for particular performance envelop within the energy systems depends on effects of complex trim geometrical features on performance characteristics; hence, the focus of recent research is on quantifying the hydrodynamic behaviour of severe service control valves, including the trims. This includes the estimation of the local flow capacity contributions of the geometrical features of the trim through detailed numerical investigations. In this work, a tool has been developed that can be used to predict the local contribution of geometrical features on the flow coefficient of the trim. It is expected that this work will result in better performance of the energy systems where these valves are used.
ASIM, T., CHARLTON, M. and MISHRA., R. 2017. CFD based investigations for the design of severe service control valves used in energy systems. Energy conversion and management [online], 153, pages 288-303. Available from: https://doi.org/10.1016/j.enconman.2017.10.012
Journal Article Type | Article |
---|---|
Acceptance Date | Oct 4, 2017 |
Online Publication Date | Oct 13, 2017 |
Publication Date | Dec 1, 2017 |
Deposit Date | Mar 9, 2020 |
Publicly Available Date | Mar 9, 2020 |
Journal | Energy conversion and management |
Print ISSN | 0196-8904 |
Electronic ISSN | 1879-2227 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 153 |
Pages | 288-303 |
DOI | https://doi.org/10.1016/j.enconman.2017.10.012 |
Keywords | Computational fluid dynamics (CFD); Severe service; Control valves; Flow capacity; Energy systems |
Public URL | https://rgu-repository.worktribe.com/output/872298 |
ASIM 2017 CFD based investigations
(1.8 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by-nc-nd/4.0/
Start-up dynamics of vertical axis wind turbines: a review.
(2023)
Journal Article
Hydrodynamic characterisation of fire sprinkler system of a passenger railroad car.
(2023)
Journal Article
About OpenAIR@RGU
Administrator e-mail: publications@rgu.ac.uk
This application uses the following open-source libraries:
Apache License Version 2.0 (http://www.apache.org/licenses/)
Apache License Version 2.0 (http://www.apache.org/licenses/)
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search