Skip to main content

Research Repository

Advanced Search

Simultaneous ozonation of 90 organic micropollutants including illicit drugs and their metabolites in different water matrices.

Zoumpouli, Garyfalia A.; Souza, Fernanda Siqueira; Petrie, Bruce; F�ris, Liliana Amaral; Kasprzyk-Hordern, Barbara; Wenk, Jannis

Authors

Garyfalia A. Zoumpouli

Fernanda Siqueira Souza

Liliana Amaral F�ris

Barbara Kasprzyk-Hordern

Jannis Wenk



Abstract

The ozonation of 90 chemically diverse organic micropollutants (OMPs) including four classes of illicit drugs and their metabolites was studied in pure buffered water, tap water and wastewater effluent at three specific ozone doses and three pH levels. The second order rate constants for the reaction of 40 OMPs with ozone were known and span across 8 orders of magnitude, from below 1 M-1 s-1 to above 107 M-1 s-1. 47 of the tested OMPs were removed to at least 90% at the highest specific ozone dose of 0.3 mM O3 per mM C at pH 7. However, most illicit drugs, including cocainics, amphetamines and ecstasy-group compounds, were ozone-resistant due to their lack of ozone-reactive functional groups. Exceptions included some opioids and the cocaine biomarker anhydroecgonine methylester which contain olefinic bonds and/or activated benzene rings. Different removal trends at different pH for OMPs were due to the combined effect of target compound speciation and ozone stability, leading to elimination of less than 70% for all OMPs at pH 11. In both tap water and wastewater effluent scavenging by matrix components led to lower ozone exposure compared to pure buffered water and consequently lower removal of OMPs. This multi-compound ozonation study utilised liquid chromatography-mass spectrometry to provide a large dataset on the removal of environmentally relevant OMPs, including those of interest for drinking water regulations. Besides including pharmaceutically active compounds that have not been studied with ozone before (e.g. gliclazide, anhydroecgonine methylester, quetiapine, 6-monoacetylmorphine), this study simultaneously shows ozonation data for a wide range of illicit drugs.

Citation

ZOUMPOULI, G.A., SOUZA, F.S., PETRIE, B., FÉRIS, L.A., KASPRZYK-HORDERN, B. and WENK, J. 2020. Simultaneous ozonation of 90 organic micropollutants including illicit drugs and their metabolites in different water matrices. Environmental science: water research and technology [online], 6(9), pages 2465-2478. Available from: https://doi.org/10.1039/d0ew00260g

Journal Article Type Article
Acceptance Date Apr 28, 2020
Online Publication Date Apr 29, 2020
Publication Date Sep 1, 2020
Deposit Date May 18, 2020
Publicly Available Date May 18, 2020
Journal Environmental science: water research and technology
Print ISSN 2053-1400
Electronic ISSN 2053-1419
Publisher Royal Society of Chemistry
Peer Reviewed Peer Reviewed
Volume 6
Issue 9
Pages 2465-2478
DOI https://doi.org/10.1039/d0ew00260g
Keywords Ozonation; Micorpollutants; Illicit drugs
Public URL https://rgu-repository.worktribe.com/output/914575