Garyfalia A. Zoumpouli
Simultaneous ozonation of 90 organic micropollutants including illicit drugs and their metabolites in different water matrices.
Zoumpouli, Garyfalia A.; Souza, Fernanda Siqueira; Petrie, Bruce; F�ris, Liliana Amaral; Kasprzyk-Hordern, Barbara; Wenk, Jannis
Authors
Fernanda Siqueira Souza
Dr Bruce Petrie b.r.petrie@rgu.ac.uk
Associate Professor
Liliana Amaral F�ris
Barbara Kasprzyk-Hordern
Jannis Wenk
Abstract
The ozonation of 90 chemically diverse organic micropollutants (OMPs) including four classes of illicit drugs and their metabolites was studied in pure buffered water, tap water and wastewater effluent at three specific ozone doses and three pH levels. The second order rate constants for the reaction of 40 OMPs with ozone were known and span across 8 orders of magnitude, from below 1 M-1 s-1 to above 107 M-1 s-1. 47 of the tested OMPs were removed to at least 90% at the highest specific ozone dose of 0.3 mM O3 per mM C at pH 7. However, most illicit drugs, including cocainics, amphetamines and ecstasy-group compounds, were ozone-resistant due to their lack of ozone-reactive functional groups. Exceptions included some opioids and the cocaine biomarker anhydroecgonine methylester which contain olefinic bonds and/or activated benzene rings. Different removal trends at different pH for OMPs were due to the combined effect of target compound speciation and ozone stability, leading to elimination of less than 70% for all OMPs at pH 11. In both tap water and wastewater effluent scavenging by matrix components led to lower ozone exposure compared to pure buffered water and consequently lower removal of OMPs. This multi-compound ozonation study utilised liquid chromatography-mass spectrometry to provide a large dataset on the removal of environmentally relevant OMPs, including those of interest for drinking water regulations. Besides including pharmaceutically active compounds that have not been studied with ozone before (e.g. gliclazide, anhydroecgonine methylester, quetiapine, 6-monoacetylmorphine), this study simultaneously shows ozonation data for a wide range of illicit drugs.
Citation
ZOUMPOULI, G.A., SOUZA, F.S., PETRIE, B., FÉRIS, L.A., KASPRZYK-HORDERN, B. and WENK, J. 2020. Simultaneous ozonation of 90 organic micropollutants including illicit drugs and their metabolites in different water matrices. Environmental science: water research and technology [online], 6(9), pages 2465-2478. Available from: https://doi.org/10.1039/d0ew00260g
Journal Article Type | Article |
---|---|
Acceptance Date | Apr 28, 2020 |
Online Publication Date | Apr 29, 2020 |
Publication Date | Sep 1, 2020 |
Deposit Date | May 18, 2020 |
Publicly Available Date | May 18, 2020 |
Journal | Environmental science: water research and technology |
Print ISSN | 2053-1400 |
Electronic ISSN | 2053-1419 |
Publisher | Royal Society of Chemistry |
Peer Reviewed | Peer Reviewed |
Volume | 6 |
Issue | 9 |
Pages | 2465-2478 |
DOI | https://doi.org/10.1039/d0ew00260g |
Keywords | Ozonation; Micorpollutants; Illicit drugs |
Public URL | https://rgu-repository.worktribe.com/output/914575 |
Files
ZOUMPOULI 2020 Simultaneous
(4.1 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by/3.0/
You might also like
Downloadable Citations
About OpenAIR@RGU
Administrator e-mail: publications@rgu.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search