D. Singh
Local multiphase flow characteristics of a severe-service control valve.
Singh, D.; Aliyu, A. M.; Charlton, M.; Mishra, R.; Asim, T.; Oliveira, A. C.
Authors
A. M. Aliyu
M. Charlton
R. Mishra
Dr Taimoor Asim t.asim@rgu.ac.uk
Associate Professor
A. C. Oliveira
Abstract
For safety-critical industrial applications, severe-service valves are often used, and the conditions during operations can be either single phase or multiphase. The design requirements for valves handling multiphase flows can be very different to the single-phase flow and depend on the flow regime within valves. The variation in flow conditions during the operation of such valves can have a significant effect on performance, particularly in oil and gas applications where multiphase behaviour can rapidly change within the valve causing unwanted flow conditions. Current practices in designing and sizing such valves are based solely on global phase properties such as pressure drop of the bulk fluid across the valve and overall phase ratio. These do not take into account local flow conditions, as with multiphase fluids, the flow behaviour across the valve becomes more complex. In this work, a well-validated computational fluid dynamics (CFD) model is used to locally and globally quantify the performance characteristics of a severe service valve handling multiphase gas and liquid flow. Such flows are frequently encountered in process equipment found in vital energy industries e.g. process and oil & gas. The CFD model was globally validated with benchmark experiments. Two valve opening positions of 60% and 100% were considered each with 5, 10, and 15% inlet air volume fractions to simulate real life conditions. The results show that while the non-uniformity in pressure field is along expected lines, there is severe non-uniformity in the local air, water and void fraction distributions within the valve trim. To quantify the phase non-uniformities observed, an equation for the distribution parameter was defined and used to calculate its value in each localised quarter within the trim. Phase velocity and void fraction data extracted from the CFD results were also used to obtain relationships for the local void fraction distribution and flow coefficient. The detailed investigation that has been carried out allows for local flow characteristics to be determined and embedded in sizing methodology for severe-service control valve systems with multiphase gas and liquid flow.
Citation
SINGH, D., ALIYU, A.M., CHARLTON, M., MISHRA, R., ASIM, T. and OLIVEIRA, A.C. 2020. Local multiphase flow characteristics of a severe-service control valve. Journal of petroleum science and engineering [online], 195, article ID 107557. Available from: https://doi.org/10.1016/j.petrol.2020.107557
Journal Article Type | Article |
---|---|
Acceptance Date | Jun 18, 2020 |
Online Publication Date | Jul 5, 2020 |
Publication Date | Dec 31, 2020 |
Deposit Date | Jul 9, 2020 |
Publicly Available Date | Jul 6, 2021 |
Journal | Journal of Petroleum Science and Engineering |
Print ISSN | 0920-4105 |
Electronic ISSN | 1873-4715 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 195 |
Article Number | 107557 |
DOI | https://doi.org/10.1016/j.petrol.2020.107557 |
Keywords | Computational fluid dynamics; Control valves; Drift flux model; Flow capacity; Two-phase flow; Valve trim |
Public URL | https://rgu-repository.worktribe.com/output/943886 |
Files
SINGH 2020 Local multiphase
(4.7 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by-nc-nd/4.0/
You might also like
Characteristics of gas transport through inorganic ceramic membranes as porous media using air and nitrogen.
(2022)
Conference Proceeding
Effects of damaged rotor on wake dynamics of vertical axis wind turbines.
(2021)
Journal Article
The innovative design of air caps for improving the thermal efficiency of CFB boilers.
(2021)
Journal Article
Numerical investigations on the propagation of fire in a railway carriage.
(2020)
Journal Article