Skip to main content

Research Repository

Advanced Search

All Outputs (5)

Building personalised XAI experiences through iSee: a case-based reasoning-driven platform. (2024)
Presentation / Conference Contribution
CARO-MARTÍNEZ, M., LIRET, A., DÍAZ-AGUDO, B., RECIO-GARCÍA, J.A., DARIAS, J., WIRATUNGA, N., WIJEKOON, A., MARTIN, K., NKISI-ORJI, I., CORSAR, D., PALIHAWADANA, C., PIRIE, C., BRIDGE, D., PRADEEP, P. and FLEISCH, B. 2024. Building personalised XAI experiences through iSee: a case-based reasoning-driven platform. In Longo, L., Liu, W. and Montavon, G. (eds.) xAI-2024: LB/D/DC: joint proceedings of the xAI 2024 late-breaking work, demos and doctoral consortium, co-located with the 2nd World conference on eXplainable artificial intelligence (xAI 2024), 17-19 July 2024, Valletta, Malta. Aachen: CEUR-WS [online], 3793, pages 313-320. Available from: https://ceur-ws.org/Vol-3793/paper_40.pdf

Nowadays, eXplainable Artificial Intelligence (XAI) is well-known as an important field in Computer Science due to the necessity of understanding the increasing complexity of Artificial Intelligence (AI) systems or algorithms. This is the reason why... Read More about Building personalised XAI experiences through iSee: a case-based reasoning-driven platform..

AGREE: a feature attribution aggregation framework to address explainer disagreements with alignment metrics. (2023)
Presentation / Conference Contribution
PIRIE, C., WIRATUNGA, N., WIJEKOON, A. and MORENO-GARCIA, C.F. 2023. AGREE: a feature attribution aggregation framework to address explainer disagreements with alignment metrics. In Malburg, L. and Verma, D. (eds.) Workshop proceedings of the 31st International conference on case-based reasoning (ICCBR-WS 2023), 17 July 2023, Aberdeen, UK. CEUR workshop proceedings, 3438. Aachen: CEUR-WS [online], pages 184-199. Available from: https://ceur-ws.org/Vol-3438/paper_14.pdf

As deep learning models become increasingly complex, practitioners are relying more on post hoc explanation methods to understand the decisions of black-box learners. However, there is growing concern about the reliability of feature attribution expl... Read More about AGREE: a feature attribution aggregation framework to address explainer disagreements with alignment metrics..

Explainable weather forecasts through an LSTM-CBR twin system. (2023)
Presentation / Conference Contribution
PIRIE, C., SURESH, M., SALIMI, P., PALIHAWADANA, C. and NANAYAKKARA, G. 2022. Explainable weather forecasts through an LSTM-CBR twin system. In Reuss, P. and Schönborn, J. (eds.) Workshop proceedings of the 30th International conference on case-based reasoning (ICCBR-WS 2022), 12-15 September 2022, Nancy, France. CEUR workshop proceedings, 3389. Aachen: CEUR-WS [online], pages 256-260. Available from: https://ceur-ws.org/Vol-3389/ICCBR_2022_XCBR_Challenge_RGU.pdf

In this paper, we explore two methods for explaining LSTM-based temperature forecasts using previous 14 day progressions of humidity and pressure. First, we propose and evaluate an LSTM-CBR twin system that generates nearest-neighbors that can be vis... Read More about Explainable weather forecasts through an LSTM-CBR twin system..

Explaining and upsampling anomalies in time-series sensor data. (2022)
Presentation / Conference Contribution
PIRIE, C. 2022. Explaining and upsampling anomalies in time-series sensor data. In Reuss, P. and Schönborn, J. (eds.) Proceedings of the 30th Doctoral consortium of the international conference on case-based reasoning (ICCBR-DC 2022), co-located with the 30th International conference on case-based reasoning (ICCBR 2022), 12-15 September 2022, Nancy, France. CEUR workshop proceedings, 3418. Aachen: CEUR-WS [online], pages 16-21. Available from: https://ceur-ws.org/Vol-3418/ICCBR_2022_DC_paper13.pdf

The aims of this research was to improve anomaly detection methods in multi-sensor data by extending current re-sampling and explanation methods to work in a time-series setting. While there is a plethora of literature surrounding XAI for tabular dat... Read More about Explaining and upsampling anomalies in time-series sensor data..

Image pre-processing and segmentation for real-time subsea corrosion inspection. (2021)
Presentation / Conference Contribution
PIRIE, C. and MORENO-GARCIA, C.F. 2021. Image pre-processing and segmentation for real-time subsea corrosion inspection. In Iliadis, L., Macintyre, J., Jayne, C. and Pimenidis, E. (eds.). Proceedings of the 22nd Engineering applications of neural networks conference (EANN2021), 25-27 June 2021, Halkidiki, Greece. Proceedings of the International Neural Networks Society (INNS), 3. Cham: Springer [online], pages 220-231. Available from: https://doi.org/10.1007/978-3-030-80568-5_19

Inspection engineering is a highly important field in the Oil & Gas sector for analysing the health of offshore assets. Corrosion, a naturally occurring phenomenon, arises as a result of a chemical reaction between a metal and its environment, causin... Read More about Image pre-processing and segmentation for real-time subsea corrosion inspection..