Skip to main content

Research Repository

Advanced Search

Dr Thanh Nguyen's Outputs (36)

A novel ensemble aggregation method based on deep learning representation. (2024)
Presentation / Conference Contribution
NGUYEN, T.T., ELYAN, E., DANG, T., NGUYEN, T.T. and LONGMUIR, M. 2025. A novel ensemble aggregation method based on deep learning representation. In Antonacopoulos, A., Chaudhuri, S., Chellappa, R., et al. (eds.) Pattern recognition: proceedings of the 27th International conference on pattern recognition, 01-05 December 2024, Kolkata, India. Lecture notes in computer science, 15324. Cham: Springer [online], pages 31-46. Available from: https://doi.org/10.1007/978-3-031-78383-8_3

We propose a novel ensemble aggregation method by using a deep learning-based representation approach. Specifically, we applied the Cross-Validation procedure on training data with a number of learning algorithms to obtain the predictions for trainin... Read More about A novel ensemble aggregation method based on deep learning representation..

Event classification on subsea pipeline inspection data using an ensemble of deep learning classifiers. (2024)
Journal Article
DANG, T., NGUYEN, T.T., LIEW, A.W.-C. and ELYAN, E. 2025. Event classification on subsea pipeline inspection data using an ensemble of deep learning classifiers. Cognitive computation [online], 17(1), article 10. Available from: https://doi.org/10.1007/s12559-024-10377-y

Subsea pipelines are the backbone of the modern oil and gas industry, transporting a total of 28% of global oil production. Due to several factors, such as corrosion or deformations, the pipelines might degrade over time, which might lead to serious... Read More about Event classification on subsea pipeline inspection data using an ensemble of deep learning classifiers..

Which classifiers are connected to others? An optimal connection framework for multi-layer ensemble systems. (2024)
Journal Article
DANG, T., NGUYEN, T.T., LIEW, A.W.-C., ELYAN, E. and MCCALL, J. 2024. Which classifiers are connected to others? An optimal connection framework for multi-layer ensemble systems. Knowledge-based systems [online], 304, article number 112522. Available from: https://doi.org/10.1016/j.knosys.2024.112522

Ensemble learning is a powerful machine learning strategy that combines multiple models e.g. classifiers to improve predictions beyond what any single model can achieve. Until recently, traditional ensemble methods typically use only one layer of mod... Read More about Which classifiers are connected to others? An optimal connection framework for multi-layer ensemble systems..

VISTA: a variable length genetic algorithm and LSTM-based surrogate assisted ensemble selection algorithm in multiple layers ensemble system. (2024)
Presentation / Conference Contribution
HAN, K., NGUYEN, T.T., VU, V.A., LIEW, A.W.-C., DANG, T. and NGUYEN, T.T. 2024. VISTA: a variable length genetic algorithm and LSTM-based surrogate assisted ensemble selection algorithm in multiple layers ensemble system. In Proceedings of the 2024 IEEE (Institute of Electrical and Electronics Engineers) Congress on evolutionary computation (CEC 2024), 30 June - 05 July 2024, Yokohama, Japan. Piscataway: IEEE [online], article 10612029. Available from: https://doi.org/10.1109/CEC60901.2024.10612029

We proposed a novel ensemble selection method called VISTA for multiple layers ensemble systems (MLES). Our ensemble model consists of multiple layers of ensemble of classifiers (EoC) in which the EoC in each layer is trained on the data generated by... Read More about VISTA: a variable length genetic algorithm and LSTM-based surrogate assisted ensemble selection algorithm in multiple layers ensemble system..

A novel surrogate model for variable-length encoding and its application in optimising deep learning architecture. (2024)
Presentation / Conference Contribution
DANG, T., NGUYEN, T.T., MCCALL, J., HAN, K. and LIEW, A.W.-C. 2024. A novel surrogate model for variable-length encoding and its application in optimising deep learning architecture. In Proceedings of the 2024 IEEE (Institute of Electrical and Electronics Engineers) Congress on evolutionary computation (CEC 2024), 30 June - 05 July 2024, Yokohama, Japan. Available from: https://doi.org/10.1109/CEC60901.2024.10611960

Deep neural networks (DNN) has achieved great successes across multiple domains. In recent years, a number of approaches have emerged on automatically finding the optimal DNN configurations. A technique among these approaches which show great promise... Read More about A novel surrogate model for variable-length encoding and its application in optimising deep learning architecture..

Two-layer ensemble of deep learning models for medical image segmentation. (2024)
Journal Article
DANG, T., NGUYEN, T.T., MCCALL, J., ELYAN, E. and MORENO-GARCÍA, C.F. 2024. Two-layer ensemble of deep learning models for medical image segmentation. Cognitive computation [online], 16(3), pages 1141-1160. Available from: https://doi.org/10.1007/s12559-024-10257-5

One of the most important areas in medical image analysis is segmentation, in which raw image data is partitioned into structured and meaningful regions to gain further insights. By using Deep Neural Networks (DNN), AI-based automated segmentation al... Read More about Two-layer ensemble of deep learning models for medical image segmentation..

A weighted ensemble of regression methods for gross error identification problem. (2023)
Presentation / Conference Contribution
DOBOS, D., DANG, T., NGUYEN, T.T., MCCALL, J., WILSON, A., CORBETT, H. and STOCKTON, P. 2023. A weighted ensemble of regression methods for gross error identification problem. In Proceedings of the 2023 IEEE (Institute of Electrical and Electronics Engineers) Symposium series on computational intelligence (SSCI 2023), 5-8 December 2023, Mexico City, Mexico. Piscataway: IEEE [online], pages 413-420. Available from: https://doi.org/10.1109/SSCI52147.2023.10371882

In this study, we proposed a new ensemble method to predict the magnitude of gross errors (GEs) on measurement data obtained from the hydrocarbon and stream processing industries. Our proposed model consists of an ensemble of regressors (EoR) obtaine... Read More about A weighted ensemble of regression methods for gross error identification problem..

DEFEG: deep ensemble with weighted feature generation. (2023)
Journal Article
LUONG, A.V., NGUYEN, T.T., HAN, K., VU, T.H., MCCALL, J. and LIEW, A.W.-C. 2023. DEFEG: deep ensemble with weighted feature generation. Knowledge-based systems [online], 275, article 110691. Available from: https://doi.org/10.1016/j.knosys.2023.110691

With the significant breakthrough of Deep Neural Networks in recent years, multi-layer architecture has influenced other sub-fields of machine learning including ensemble learning. In 2017, Zhou and Feng introduced a deep random forest called gcFores... Read More about DEFEG: deep ensemble with weighted feature generation..

A comparative study of anomaly detection methods for gross error detection problems. (2023)
Journal Article
DOBOS, D., NGUYEN, T.T., DANG, T., WILSON, A., CORBETT, H., MCCALL, J. and STOCKTON, P. 2023. A comparative study of anomaly detection methods for gross error detection problems. Computers and chemical engineering [online], 175, article 108263. Available from: https://doi.org/10.1016/j.compchemeng.2023.108263

The chemical industry requires highly accurate and reliable measurements to ensure smooth operation and effective monitoring of processing facilities. However, measured data inevitably contains errors from various sources. Traditionally in flow syste... Read More about A comparative study of anomaly detection methods for gross error detection problems..

Ensemble learning based on classifier prediction confidence and comprehensive learning particle swarm optimisation for medical image segmentation. (2022)
Presentation / Conference Contribution
DANG, T., NGUYEN, T.T., MCCALL, J. and LIEW, A.W.-C. 2022. Ensemble learning based on classifier prediction confidence and comprehensive learning particle swarm optimisation for medical image segmentation. In Ishibuchi, H., Kwoh, C.-K., Tan, A.-H., Srinivasan, D., Miao, C., Trivedi, A. and Crockett, K. (eds.) Proceedings of the 2022 IEEE Symposium series on computational intelligence (SSCI 2022), 4-7 December 2022, Singapore. Piscataway: IEEE [online], pages 269-276. Available from: https://doi.org/10.1109/SSCI51031.2022.10022114

Segmentation, a process of partitioning an image into multiple segments to locate objects and boundaries, is considered one of the most essential medical imaging process. In recent years, Deep Neural Networks (DNN) have achieved many notable successe... Read More about Ensemble learning based on classifier prediction confidence and comprehensive learning particle swarm optimisation for medical image segmentation..

Ensemble of deep learning models with surrogate-based optimization for medical image segmentation. (2022)
Presentation / Conference Contribution
DANG, T., LUONG, A.V., LIEW, A.W.C., MCCALL, J. and NGUYEN, T.T. 2022. Ensemble of deep learning models with surrogate-based optimization for medical image segmentation. In 2022 IEEE (Institute of Electrical and Electronics Engineers) Congress on evolutionary computation (CEC 2022), co-located with 2022 IEEE International joint conferences on neural networks (IJCNN 2022), 2022 IEEE International conference on fuzzy systems (FUZZ-IEEE 2022), 18-23 July 2022, Padua, Italy. Piscataway: IEEE (online), article #1030. Available from: https://doi.org/10.1109/CEC55065.2022.9870389

Deep Neural Networks (DNNs) have created a breakthrough in medical image analysis in recent years. Because clinical applications of automated medical analysis are required to be reliable, robust and accurate, it is necessary to devise effective DNNs... Read More about Ensemble of deep learning models with surrogate-based optimization for medical image segmentation..

Streaming multi-layer ensemble selection using dynamic genetic algorithm. (2021)
Presentation / Conference Contribution
LUONG, A.V., NGUYEN, T.T. and LIEW, A.W.-C. 2021. Streaming multi-layer ensemble selection using dynamic genetic algorithm. In Zhou, J., Salvado, O., Sohel, F., Borges, P. and Wang, S. (eds.). Proceedings of 2021 Digital image computing: techniques and applications (DICTA 2021), 29 November - 1 December 2021, Gold Coast, Australia. Piscataway: IEEE [online], article 9647220. Available from: https://doi.org/10.1109/dicta52665.2021.9647220

In this study, we introduce a novel framework for non-stationary data stream classification problems by modifying the Genetic Algorithm to search for the optimal configuration of a streaming multi-layer ensemble. We aim to connect the two sub-fields... Read More about Streaming multi-layer ensemble selection using dynamic genetic algorithm..

Weighted ensemble of deep learning models based on comprehensive learning particle swarm optimization for medical image segmentation. (2021)
Presentation / Conference Contribution
DANG, T., NGUYEN, T.T., MORENO-GARCIA, C.F., ELYAN, E. and MCCALL, J. 2021. Weighted ensemble of deep learning models based on comprehensive learning particle swarm optimization for medical image segmentation. In Proceeding of 2021 IEEE (Institute of electrical and electronics engineers) Congress on evolutionary computation (CEC 2021), 28 June - 1 July 2021, Kraków, Poland : [virtual conference]. Piscataway: IEEE [online], pages 744-751. Available from: https://doi.org/10.1109/CEC45853.2021.9504929

In recent years, deep learning has rapidly become a method of choice for segmentation of medical images. Deep neural architectures such as UNet and FPN have achieved high performances on many medical datasets. However, medical image analysis algorith... Read More about Weighted ensemble of deep learning models based on comprehensive learning particle swarm optimization for medical image segmentation..

Weighted ensemble of gross error detection methods based on particle swarm optimization. (2021)
Presentation / Conference Contribution
DOBOS, D., NGUYEN, T.T., MCCALL, J., WILSON, A., STOCKTON, P. and CORBETT, H. 2021. Weighted ensemble of gross error detection methods based on particle swarm optimization. In Chicano, F. (ed) Proceedings of the 2021 Genetic and evolutionary computation conference (GECCO 2021), 10-14 July 2021, [virtual conference]. New York: ACM [online], pages 307-308. Available from: https://doi.org/10.1145/3449726.3459415

Gross errors, a kind of non-random error caused by process disturbances or leaks, can make reconciled estimates can be very inaccurate and even infeasible. Detecting gross errors thus prevents financial loss from incorrectly accounting and also ident... Read More about Weighted ensemble of gross error detection methods based on particle swarm optimization..

Two layer ensemble of deep learning models for medical image segmentation. [Preprint] (2021)
Preprint / Working Paper
DANG, T., NGUYEN, T.T., MCCALL, J., ELYAN, E. and MORENO-GARCÍA, C.F. 2021. Two layer ensemble of deep learning models for medical image segmentation. arXiv [online]. Available from: https://doi.org/10.48550/arXiv.2104.04809

In recent years, deep learning has rapidly become a method of choice for the segmentation of medical images. Deep Neural Network (DNN) architectures such as UNet have achieved state-of-the-art results on many medical datasets. To further improve the... Read More about Two layer ensemble of deep learning models for medical image segmentation. [Preprint].

VEGAS: a variable length-based genetic algorithm for ensemble selection in deep ensemble learning. (2021)
Presentation / Conference Contribution
HAN, K., PHAM, T., VU, T.H., DANG, T., MCCALL, J. and NGUYEN, T.T. 2021. VEGAS: a variable length-based genetic algorithm for ensemble selection in deep ensemble learning. In Nguyen, N.T., Chittayasothorn, S., Niyato, D. and Trawiński, B. (eds.) Intelligent information and database systems: proceedings of the 13th Asian conference on intelligent information and database systems 2021 (ACCIIDS 2021), 7-10 April 2021, [virtual conference]. Lecture Notes in Computer Science, 12672. Cham: Springer [online], pages 168–180. Available from: https://doi.org/10.1007/978-3-030-73280-6_14

In this study, we introduce an ensemble selection method for deep ensemble systems called VEGAS. The deep ensemble models include multiple layers of the ensemble of classifiers (EoC). At each layer, we train the EoC and generates training data for th... Read More about VEGAS: a variable length-based genetic algorithm for ensemble selection in deep ensemble learning..

A homogeneous-heterogeneous ensemble of classifiers. (2020)
Presentation / Conference Contribution
LUONG, A.V., VU, T.H., NGUYEN, P.M., VAN PHAM, N., MCCALL, J., LIEW, A.W.-C. and NGUYEN, T.T. 2020. A homogeneous-heterogeneous ensemble of classifiers. In Yang, H., Pasupa, K., Leung, A.C.-S., Kwok, J.T., Chan, J.H. and King, I. (eds.) Neural information processing: proceedings of 27th International conference on neural information processing 2020 (ICONIP 2020), part 5. Communications in computer and information science, 1333. Cham: Springer [online], pages, 251-259. Available from: https://doi.org/10.1007/978-3-030-63823-8_30

In this study, we introduce an ensemble system by combining homogeneous ensemble and heterogeneous ensemble into a single framework. Based on the observation that the projected data is significantly different from the original data as well as each ot... Read More about A homogeneous-heterogeneous ensemble of classifiers..

Toward an ensemble of object detectors. (2020)
Presentation / Conference Contribution
DANG, T., NGUYEN, T.T. and MCCALL, J. 2020. Toward an ensemble of object detectors. In Yang, H., Pasupa, K., Leung, A.C.-S., Kwok, J.T., Chan, J.H. and King, I. (eds.) Neural information processing: proceedings of 27th International conference on neural information processing 2020 (ICONIP 2020), part 5. Communications in computer and information science, 1333. Cham: Springer [online], pages, 458-467. Available from: https://doi.org/10.1007/978-3-030-63823-8_53

The field of object detection has witnessed great strides in recent years. With the wave of deep neural networks (DNN), many breakthroughs have achieved for the problems of object detection which previously were thought to be difficult. However, ther... Read More about Toward an ensemble of object detectors..

Heterogeneous ensemble selection for evolving data streams. (2020)
Journal Article
LUONG, A.V., NGUYEN, T.T., LIEW, A.W.-C. and WANG, S. 2021. Heterogeneous ensemble selection for evolving data streams. Pattern recognition [online], 112, article ID 107743. Available from: https://doi.org/10.1016/j.patcog.2020.107743

Ensemble learning has been widely applied to both batch data classification and streaming data classification. For the latter setting, most existing ensemble systems are homogenous, which means they are generated from only one type of learning model.... Read More about Heterogeneous ensemble selection for evolving data streams..

Heterogeneous ensemble selection for evolving data streams. [Dataset] (2020)
Data
LUONG, A.V., NGUYEN, T.T., LIEW, A.W.-C. and WANG, S. 2021. Heterogeneous ensemble selection for evolving data streams. [Dataset]. Pattern recognition [online], 112, article ID 107743. Available from: https://www.sciencedirect.com/science/article/pii/S003132032030546X#sec0023

Ensemble learning has been widely applied to both batch data classification and streaming data classification. For the latter setting, most existing ensemble systems are homogenous, which means they are generated from only one type of learning model.... Read More about Heterogeneous ensemble selection for evolving data streams. [Dataset].