Skip to main content

Research Repository

Advanced Search

Dr Thanh Nguyen's Outputs (36)

WEC: weighted ensemble of text classifiers. (2020)
Presentation / Conference Contribution
UPADHYAY, A., NGUYEN, T.T., MASSIE, S. and MCCALL, J. 2020. WEC: weighted ensemble of text classifiers. In Proceedings of 2020 Institute of Electrical and Electronics Engineers (IEEE) congress on evolutionary computation (IEEE CEC 2020), part of the 2020 (IEEE) World congress on computational intelligence (IEEE WCCI 2020) and co-located with the 2020 International joint conference on neural networks (IJCNN 2020) and the 2020 IEEE International fuzzy systems conference (FUZZ-IEEE 2020), 19-24 July 2020, Glasgow, UK [virtual conference]. Piscataway: IEEE [online], article ID 9185641. Available from: https://doi.org/10.1109/CEC48606.2020.9185641

Text classification is one of the most important tasks in the field of Natural Language Processing. There are many approaches that focus on two main aspects: generating an effective representation; and selecting and refining algorithms to build the c... Read More about WEC: weighted ensemble of text classifiers..

Evolved ensemble of detectors for gross error detection. (2020)
Presentation / Conference Contribution
NGUYEN, T.T., MCCALL, J., WILSON, A., OCHEI, L., CORBETT, H. and STOCKTON, P. 2020. Evolved ensemble of detectors for gross error detection. In GECCO '20: proceedings of the Genetic and evolutionary computation conference companion (GECCO 2020), 8-12 July 2020, Cancún, Mexico. New York: ACM [online], pages 281-282. Available from: https://doi.org/10.1145/3377929.3389906

In this study, we evolve an ensemble of detectors to check the presence of gross systematic errors on measurement data. We use the Fisher method to combine the output of different detectors and then test the hypothesis about the presence of gross err... Read More about Evolved ensemble of detectors for gross error detection..

Multi-layer heterogeneous ensemble with classifier and feature selection. (2020)
Presentation / Conference Contribution
NGUYEN, T.T., VAN PHAM, N., DANG, M.T., LUONG, A.V., MCCALL, J. and LIEW, A.W.C. 2020. Multi-layer heterogeneous ensemble with classifier and feature selection. In GECCO '20: proceedings of the Genetic and evolutionary computation conference (GECCO 2020), 8-12 July 2020, Cancun, Mexico. New York: ACM [online], pages 725-733. Available from: https://doi.org/10.1145/3377930.3389832

Deep Neural Networks have achieved many successes when applying to visual, text, and speech information in various domains. The crucial reasons behind these successes are the multi-layer architecture and the in-model feature transformation of deep le... Read More about Multi-layer heterogeneous ensemble with classifier and feature selection..

Evolving interval-based representation for multiple classifier fusion. (2020)
Journal Article
NGUYEN, T.T., DANG,M.T., BAGHEL, V.A., LUONG, A.V., MCCALL, J. and LIEW, A.W.-C. 2020 Evolving interval-based representation for multiple classifier fusion. Knowledge-based systems [online], 201-202, article ID 106034. Available from: https://doi.org/10.1016/j.knosys.2020.106034

Designing an ensemble of classifiers is one of the popular research topics in machine learning since it can give better results than using each constituent member. Furthermore, the performance of ensemble can be improved using selection or adaptation... Read More about Evolving interval-based representation for multiple classifier fusion..

Confidence in prediction: an approach for dynamic weighted ensemble. (2020)
Presentation / Conference Contribution
DO D.T., NGUYEN T.T., NGUYEN T.T., LUONG A.V., LIEW A.W.-C. and MCCALL J. 2020. Confidence in prediction: an approach for dynamic weighted ensemble. In Nguyen N., Jearanaitanakij K., Selamat A., Trawiński B. and Chittayasothorn S. (eds.) Intelligent information and database systems: proceedings of the 12th Asian intelligent information and database systems conference (ACIIDS 2020), 23-26 March 2020, Phuket, Thailand. Lecture Notes in Computer Science, 12033. Cham: Springer [online], part 1, pages 358-370. Available from: https://doi.org/10.1007/978-3-030-41964-6_31

Combining classifiers in an ensemble is beneficial in achieving better prediction than using a single classifier. Furthermore, each classifier can be associated with a weight in the aggregation to boost the performance of the ensemble system. In this... Read More about Confidence in prediction: an approach for dynamic weighted ensemble..

Deep heterogeneous ensemble. (2019)
Presentation / Conference Contribution
NGUYEN, T.T., DANG, M.T., PHAM, T.D., DAO, L.P., LUONG, A.V., MCCALL, J. and LIEW, A.W.C. 2019. Deep heterogeneous ensemble. Australian journal of intelligent information processing systems [online], 16(1): special issue on neural information processing: proceedings of the 26th International conference on neural information processing (ICONIP 2019), 12-15 December 2019, Sydney, Australia, pages 1-9. Available from: http://ajiips.com.au/papers/V16.1/v16n1_5-13.pdf

In recent years, deep neural networks (DNNs) have emerged as a powerful technique in many areas of machine learning. Although DNNs have achieved great breakthrough in processing images, video, audio and text, it also has some limitations... Read More about Deep heterogeneous ensemble..

Evolving an optimal decision template for combining classifiers. (2019)
Presentation / Conference Contribution
NGUYEN, T.T., LUONG, A.V., DANG, M.T., DAO, L.P., NGUYEN, T.T.T., LIEW, A.W.-C. and MCCALL, J. 2019. Evolving an optimal decision template for combining classifiers. In Gedeon, T., Wong, K.W. and Lee, M. (eds.) Neural information processing: proceedings of the 26th International conference on neural information processing (ICONIP 2019), 12-15 December 2019, Sydney, Australia. Part I. Lecture notes in computer science, 11953. Cham: Springer [online], pages 608-620. Available from: https://doi.org/10.1007/978-3-030-36708-4_50

In this paper, we aim to develop an effective combining algorithm for ensemble learning systems. The Decision Template method, one of the most popular combining algorithms for ensemble systems, does not perform well when working on certain datasets l... Read More about Evolving an optimal decision template for combining classifiers..

Ensemble selection based on classifier prediction confidence. (2019)
Journal Article
NGUYEN, T.T., LUONG, A.V., DANG, M.T., LIEW, A.W.-C. and MCCALL, J. 2020. Ensemble selection based on classifier prediction confidence. Pattern recognition [online], 100, article ID 107104. Available from: https://doi.org/10.1016/j.patcog.2019.107104

Ensemble selection is one of the most studied topics in ensemble learning because a selected subset of base classifiers may perform better than the whole ensemble system. In recent years, a great many ensemble selection methods have been introduced.... Read More about Ensemble selection based on classifier prediction confidence..

An online variational inference and ensemble based multi-label classifier for data streams. (2019)
Presentation / Conference Contribution
NGUYEN, T.T.T., NGUYEN, T.T., LIEW, A.W.-C., WANG, S.-L., LIANG, T. and HU, Y. 2019. An online variational inference and ensemble based multi-label classifier for data streams. In Proceedings of 11th International conference on advanced computational intelligence (ICACI 2019), 7-9 June 2019, Guilin, China. Piscataway: IEEE [online], pages 302-307. Available from: https://doi.org/10.1109/ICACI.2019.8778594

Recently, multi-label classification algorithms have been increasingly required by a diversity of applications, such as text categorization, web, and social media mining. In particular, these applications often have streams of data coming continuousl... Read More about An online variational inference and ensemble based multi-label classifier for data streams..

Simultaneous meta-data and meta-classifier selection in multiple classifier system. (2019)
Presentation / Conference Contribution
NGUYEN, T.T., LUONG, A.V., NGUYEN, T.M.V., HA, T.S., LIEW, A.W.-C. and MCCALL, J. 2019. Simultaneous meta-data and meta-classifier selection in multiple classifier system. In López-Ibáñez, M. (ed.) Proceedings of the 2019 Genetic and evolutionary computation conference (GECCO ’19), 13-17 July 2019, Prague, Czech Republic. New York: ACM [online], pages 39-46. Available from: https://doi.org/10.1145/3321707.3321770

In ensemble systems, the predictions of base classifiers are aggregated by a combining algorithm (meta-classifier) to achieve better classification accuracy than using a single classifier. Experiments show that the performance of ensembles significan... Read More about Simultaneous meta-data and meta-classifier selection in multiple classifier system..

Multi-label classification via incremental clustering on an evolving data stream. (2019)
Journal Article
NGUYEN, T.T., DANG, M.T., LUONG, A.V., LIEW, A. W.-C., LIANG, T. and MCCALL, J. 2019. Multi-label classification via incremental clustering on an evolving data stream. Pattern recognition [online], 95, pages 96-113. Available from: https://doi.org/10.1016/j.patcog.2019.06.001

With the advancement of storage and processing technology, an enormous amount of data is collected on a daily basis in many applications. Nowadays, advanced data analytics have been used to mine the collected data for useful information and make pred... Read More about Multi-label classification via incremental clustering on an evolving data stream..

A weighted multiple classifier framework based on random projection. (2019)
Journal Article
NGUYEN, T.T., DANG, M.T., LIEW, A. W.-C. and BEZDEK, J.C. 2019. A weighted multiple classifier framework based on random projection. Information science [online], 490, pages 36-58. Available from: https://doi.org/10.1016/j.ins.2019.03.067

In this paper, we propose a weighted multiple classifier framework based on random projections. Similar to the mechanism of other homogeneous ensemble methods, the base classifiers in our approach are obtained by a learning algorithm on different tra... Read More about A weighted multiple classifier framework based on random projection..

A lossless online Bayesian classifier. (2019)
Journal Article
NGUYEN, T.T.T., NGUYEN, T.T., SHARMA, R. and LIEW, A. W.-C. 2019. A lossless online Bayesian classifier. Information sciences [online], 489, pages 1-17. Available from: https://doi.org/10.1016/j.ins.2019.03.031

We are living in a world progressively driven by data. Besides the issue that big data cannot be entirely stored in the main memory as required by traditional offline learning methods, the problem of learning data that can only be collected over time... Read More about A lossless online Bayesian classifier..

Multi-label classification via label correlation and first order feature dependance in a data stream. (2019)
Journal Article
NGUYEN, T.T., NGUYEN, T.T.T., LUONG, A.V., NGUYEN, Q.V.H., LIEW, A.W.-C. and STANTIC, B. 2019. Multi-label classification via label correlation and first order feature dependance in a data stream. Pattern recognition [online], 90, pages 35-51. Available from: https://doi.org/10.1016/j.patcog.2019.01.007

Many batch learning algorithms have been introduced for offline multi-label classification (MLC) over the years. However, the increasing data volume in many applications such as social networks, sensor networks, and traffic monitoring has posed many... Read More about Multi-label classification via label correlation and first order feature dependance in a data stream..

Combining heterogeneous classifiers via granular prototypes. (2018)
Journal Article
NGUYEN, T.T., NGUYEN, M.P., PHAM, X.C., LIEW, A. W.-C. and PEDRYCZ, W. 2018. Combining heterogeneous classifiers via granular prototypes. Applied soft computing [online], 73, pages 795-815. Available from: https://doi.org/10.1016/j.asoc.2018.09.021

In this study, a novel framework to combine multiple classifiers in an ensemble system is introduced. Here we exploit the concept of information granule to construct granular prototypes for each class on the outputs of an ensemble of base classifiers... Read More about Combining heterogeneous classifiers via granular prototypes..

Aggregation of classifiers: a justifiable information granularity approach. (2018)
Journal Article
NGUYEN, T.T., PHAM, X.C., LIEW, A.W.-C. and PEDRYCZ, W. 2019. Aggregation of classifiers: a justifiable information granularity approach. IEEE transactions on cybernetics [online], 49(6), pages 2168-2177. Available from: https://doi.org/10.1109/TCYB.2018.2821679

In this paper, we introduced a new approach of combining multiple classifiers in a heterogeneous ensemble system. Instead of using numerical membership values when combining, we constructed interval membership values for each class prediction from th... Read More about Aggregation of classifiers: a justifiable information granularity approach..