Allan A. Santos
Effect of hydrogen peroxide on natural phytoplankton and bacterioplankton in a drinking water reservoir: mesocosm-scale study.
Santos, Allan A.; Guedes, Dayvson O.; Barros, M�rio U.G.; Oliveira, Samylla; Pacheco, Ana B.F.; Azevedo, Sandra M.F.O.; Magalh�es, Val�ria F.; Pestana, Carlos J.; Edwards, Christine; Lawton, Linda A.; Capelo-Neto, Jos�
Authors
Dayvson O. Guedes
M�rio U.G. Barros
Samylla Oliveira
Ana B.F. Pacheco
Sandra M.F.O. Azevedo
Val�ria F. Magalh�es
Dr Carlos Pestana c.pestana@rgu.ac.uk
Lecturer
Professor Christine Edwards c.edwards@rgu.ac.uk
Professor
Professor Linda Lawton l.lawton@rgu.ac.uk
Professor
Jos� Capelo-Neto
Abstract
Cyanobacterial blooms are increasingly reported worldwide, presenting a challenge to water treatment plants and concerning risks to human health and aquatic ecosystems. Advanced oxidative processes comprise efficient and safe methods for water treatment. Hydrogen peroxide (H2O2) has been proposed as a sustainable solution to mitigate bloom-forming cyanobacteria since this group presents a higher sensitivity compared to other phytoplankton, with no major risks to the environment at low concentrations. Here, we evaluated the effects of a single H2O2 addition (10 mg L−1) over 120 h in mesocosms introduced in a reservoir located in a semi-arid region presenting a Planktothrix-dominated cyanobacterial bloom. We followed changes in physical and chemical parameters and in the bacterioplankton composition. H2O2 efficiently suppressed cyanobacteria, green algae, and diatoms over 72 h, leading to an increase in transparency and dissolved organic carbon, and a decrease in dissolved oxygen and pH, while nutrient concentrations were not affected. After 120 h, cyanobacterial abundance remained low and green algae became dominant. 16S rRNA sequencing revealed that the original cyanobacterial bloom was composed by Planktothrix, Cyanobium and Microcystis. Only Cyanobium increased in relative abundance at 120 h, suggesting regrowth. A prominent change in the composition of heterotrophic bacteria was observed with Exiguobacterium, Paracoccus and Deinococcus becoming the most abundant genera after the H2O2 treatment. Our results indicate that this approach is efficient in suppressing cyanobacterial blooms and improving water quality in tropical environments. Monitoring changes in abiotic parameters and the relative abundance of specific bacterial taxa could be used to anticipate the regrowth of cyanobacteria after H2O2 degradation and to indicate where in the reservoir H2O2 should be applied so the effects are still felt in the water treatment plant intake.
Citation
SANTOS, A.A., GUEDES, D.O., BARROS, M.U.G., OLIVEIRA, S., PACHECO, A.B.F., AZEVEDO, S.M.F.O., MAGALHÃES, V.F., PESTANA, C.J., EDWARDS, C., LAWTON, L.A. and CAPELO-NETO, J. 2021. Effect of hydrogen peroxide on natural phytoplankton and bacterioplankton in a drinking water reservoir: mesocosm-scale study. Water research [online], 197, article 117069. Available from: https://doi.org/10.1016/j.watres.2021.117069
Journal Article Type | Article |
---|---|
Acceptance Date | Mar 17, 2021 |
Online Publication Date | Mar 20, 2021 |
Publication Date | Jun 1, 2021 |
Deposit Date | Mar 26, 2021 |
Publicly Available Date | Mar 26, 2021 |
Journal | Water Research |
Print ISSN | 0043-1354 |
Electronic ISSN | 1879-2448 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 197 |
Article Number | 117069 |
DOI | https://doi.org/10.1016/j.watres.2021.117069 |
Keywords | Water quality; Cyanobacteria; Advanced oxidative process; Remediation; Metagenomics; Exiguobacterium |
Public URL | https://rgu-repository.worktribe.com/output/1280393 |
Files
SANTOS 2021 Effect of hydrogen
(3.8 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by/4.0/
You might also like
Aging microplastics enhances the adsorption of pharmaceuticals in freshwater.
(2023)
Journal Article
Photocatalytic conversion of cellulose into C5 oligosaccharides.
(2023)
Journal Article
Nature-based solution to eliminate cyanotoxins in water using biologically enhanced biochar.
(2023)
Journal Article
Transformation products of microcystin-RR with reactive species produced by radiolysis of water.
(2023)
Presentation / Conference Contribution
Downloadable Citations
About OpenAIR@RGU
Administrator e-mail: publications@rgu.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search