Shohel Siddique
Structural and thermal degradation behaviour of reclaimed clay nano-reinforced low density polyethylene nanocomposites.
Siddique, Shohel; Smith, Grant David; Yates, Kyari; Mishra, Ajay Kumar; Matthews, Kerr; Csetenyi, Laszlo J.; Njuguna, James
Authors
Grant David Smith
Dr Kyari Yates k.yates@rgu.ac.uk
Associate Professor
Ajay Kumar Mishra
Dr Kerr Matthews k.h.matthews@rgu.ac.uk
Lecturer
Laszlo J. Csetenyi
Professor James Njuguna j.njuguna@rgu.ac.uk
NSC Director of Research and Innovation
Abstract
In this study, a novel reclaimed clay nanofiller used to manufacture low-density polyethylene (LDPE)/Oil based mud fillers (OBMFs) nanocomposites by a melt compounding process. The mechanical testing samples were manufactured using injection moulding machine. The effect of reclaimed clay minerals influencing the crystallinity and the dispersion characteristics of this clay in LDPE matrix affecting the structural and thermal properties of the nanocomposites was investigated. It was observed that OBMFs was compatible with LDPE matrix which implies a strong interfacial interaction between the clay layers and polymer and that the influence of clay minerals present in OBMFs forming chemical bonds within the microstructure within the nanocomposites. The char yields of nanocomposites increased with OBMFs content. The TD5% and TD50% (onset degradation temperature at 5 weight% loss and 50 weight% loss, respectively) of the LDPE nanocomposite with 10.0 wt% OBMFs was the highest (27°C higher in TD5% and 54°C higher in TD50%) among the nanocomposites. Viscoelastic analysis data showed a sharp decrease in the storage modulus of OBMFs reinforced LDPE nanocomposites. The tan δ spectra presented a strong influence of the filler contents on the relaxation process of LDPE and its nanocomposites. An enhancement of mechanical properties of composites was identified which showed a gain of 14% Young’s modulus and a gain of 18% tensile strength at 10.0 wt% OBMFs loading compared to those properties of neat LDPE. The effect of filler dispersion in LDPE polymer matrix in relation to thermal stability is investigated and heat capacity data is employed to characterise changes in thermal characteristics relating to the nanomorphology of the materials.
Citation
SIDDIQUE, S., SMITH, G.D., YATES, K., MISHRA, A.K., MATTHEWS, K., CSETENYI, L.J. and NJUGUNA, J. 2019. Structural and thermal degradation behaviour of reclaimed clay nano-reinforced low-density polyethylene nanocomposites. Journal of polymer research [online], 26, article ID 154. Available from: https://doi.org/10.1007/s10965-019-1802-9
Journal Article Type | Article |
---|---|
Acceptance Date | Apr 29, 2019 |
Online Publication Date | Jun 1, 2019 |
Publication Date | Jun 30, 2019 |
Deposit Date | May 2, 2019 |
Publicly Available Date | May 6, 2019 |
Journal | Journal of polymer research |
Print ISSN | 1022-9760 |
Electronic ISSN | 1572-8935 |
Publisher | Springer |
Peer Reviewed | Peer Reviewed |
Volume | 26 |
Article Number | 154 |
DOI | https://doi.org/10.1007/s10965-019-1802-9 |
Keywords | OBMFs; Thermal stability; Thermal degradation; Crystallinity; Rigid amorphous fraction; Mobile amorphous fraction |
Public URL | https://rgu-repository.worktribe.com/output/240147 |
Contract Date | May 6, 2019 |
Files
SIDDIQUE 2019 Structural and thermal
(1.4 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by/4.0/
You might also like
Oil-based mud waste reclamation and utilisation in low-density polyethylene composites.
(2020)
Journal Article
Characterisation of illicit ecstasy and diazepam tablets by colorant identification.
(2018)
Journal Article
Downloadable Citations
About OpenAIR@RGU
Administrator e-mail: publications@rgu.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search