D. Sleeman
Consultant-2: pre- and post processing of machine learning applications.
Sleeman, D.; Rissakis, M.; Craw, S.; Graner, N.; Sharma, S.
Abstract
The knowledge acquisition bottleneck in the development of large knowledge-based applications has not yet been resolved. One approach which has been advocated is the systematic use of Machine Learning (ML) techniques. However, ML technology poses difficulties to domain experts and knowledge engineers who are not familiar with it. This paper discusses Consultant-2, a system which makes a first step towards providing system support for a pre- and post-processing methodology where a cyclic process of experiments with an ML tool, its data, data description language and parameters attempts to optimize learning performance. Consultant-2 has been developed to support the use of Machine Learning Toolbox (MLT), an integrated architecture of 10 ML tools, and has evolved from a series of earlier systems. Consultant-0 and Consultant-1 had knowledge only about how to choose an ML algorithm based on the nature of the domain data. Consultant-2 is the most sophisticated. It, additionally, has knowledge about how ML experts and domain experts pre-process domain data before a run with the ML algorithm, and how they further manipulate the data and reset parameters after a run of the selected ML algorithm, to achieve a more acceptable result. How these several KBs were acquired and encoded is described. In fact, this knowledge has been acquired by interacting both with the ML algorithm developers and with domain experts who had been using the MLT toolbox on real-world tasks. A major aim of the MLT project was to enable a domain expert to use the toolbox directly; i.e. without necessarily having to involve either a ML specialist or a knowledge engineer. Consultant's principal goal was to provide specific advice to ease this process.
Citation
SLEEMAN, D., RISSAKIS, M., CRAW, S., GRANER, N. and SHARMA, S., 1995. Consultant-2: pre- and post processing of machine learning applications. International journal of human computer studies [online], 43(1), pages 43-63. Available from: https://doi.org/10.1006/ijhc.1995.1035
Journal Article Type | Article |
---|---|
Acceptance Date | Jul 31, 1995 |
Online Publication Date | May 25, 2002 |
Publication Date | Jul 31, 1995 |
Deposit Date | Mar 22, 2007 |
Publicly Available Date | Mar 22, 2007 |
Journal | International journal of human-computer studies |
Print ISSN | 1071-5819 |
Electronic ISSN | 1095-9300 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 43 |
Issue | 1 |
Pages | 43-63 |
DOI | https://doi.org/10.1006/ijhc.1995.1035 |
Keywords | Machine learning tools; Knowledge acquisition; MLT tools |
Public URL | http://hdl.handle.net/10059/61 |
Contract Date | Mar 22, 2007 |
Files
SLEEMAN 1995 Consultant-2 - Pre- and post-processing
(186 Kb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by-nc-nd/4.0/
You might also like
Fall prediction using behavioural modelling from sensor data in smart homes.
(2019)
Journal Article
Improving e-learning recommendation by using background knowledge.
(2018)
Journal Article
Case-base maintenance with multi-objective evolutionary algorithms.
(2015)
Journal Article
Learning pseudo-tags to augment sparse tagging in hybrid music recommender systems.
(2014)
Journal Article
Learning adaptation knowledge to improve case-based reasoning.
(2006)
Journal Article
Downloadable Citations
About OpenAIR@RGU
Administrator e-mail: publications@rgu.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search