Dr Carlos Pestana c.pestana@rgu.ac.uk
Lecturer
Dr Carlos Pestana c.pestana@rgu.ac.uk
Lecturer
Jos� Capelo-Neto
Professor Linda Lawton l.lawton@rgu.ac.uk
Professor
Samylla Oliveira
Ismael Carloto
Hel�sia P. Linhares
Many toxic and/or noxious cyanobacteria appear in nature with a filamentous, stacked cell arrangement called trichomes. Although water treatment can be optimized to keep cyanobacterial cells intact and to avoid the release of toxic and/or noxious compounds, many physical and chemical stresses encountered during the treatment process may result in trichome truncation, decreasing treatment efficiency by allowing single cells or short trichomes to reach the product water. This makes it possible for harmful/noxious compounds as well as organic matter to enter the distribution system. Investigations in a pilot and three full-scale water treatment plants were carried out in order to elucidate the degree of trichome truncation across different unit processes. It was found that genera (Pseudanabaena, Planktolyngbya) with short trichomes ( < 10–12 cells per trichome), are hardly affected by the unit processes (loss of one to four cells respectively), while genera (Planktothrix, Geitlerinema, Dolichospermum) with longer trichomes (30+ cells per trichome) suffer from high degrees of truncation (up to 63, 30, and 56 cells per trichome respectively). The presence of a rigid sheath and/or mucilaginous layer appears to offer some protection from truncation. It was observed that certain unit processes alter the sensitivity or resilience of trichomes to disruption by physical stress. Some genera (Planktothrix, Geitlerinema) were sensitive to pre-oxidation, making them more susceptible to shear stress, while Dolichospermum sp. appears more robust after pre-oxidation. While the potential of toxicogenic genera breaking through into the product water is a real danger, in the current study no toxicogenic cyanobacteria were observed. This work stresses the need for plant operators to study the incoming cyanobacterial composition in the raw water in order to adjust treatment parameters and thus limit the potential of toxic/noxious compound breakthrough.
PESTANA, C.J., CAPELO-NETO, J., LAWTON, L., OLIVEIRA, S., CARLOTO, I. and LINHARES, H.P. 2019. The effect of water treatment unit processes on cyanobacterial trichome integrity. Science of the total environment [online], 659, pages 1403-1414. Available from: https://doi.org/10.1016/j.scitotenv.2018.12.337
Journal Article Type | Article |
---|---|
Acceptance Date | Dec 22, 2018 |
Online Publication Date | Dec 26, 2018 |
Publication Date | Apr 1, 2019 |
Deposit Date | Jan 17, 2019 |
Publicly Available Date | Dec 27, 2019 |
Journal | Science of the total environment |
Print ISSN | 0048-9697 |
Electronic ISSN | 1879-1026 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 659 |
Pages | 1403-1414 |
DOI | https://doi.org/10.1016/j.scitotenv.2018.12.337 |
Keywords | Drinking water; Water treatment plant; Filtration; Bacterial filaments; Cyanotoxins; Taste and odor |
Public URL | http://hdl.handle.net/10059/3260 |
Contract Date | Jan 17, 2019 |
PESTANA 2018 The effect of water
(4.4 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by-nc-nd/4.0/
Aging microplastics enhances the adsorption of pharmaceuticals in freshwater.
(2023)
Journal Article
Nature-based solution to eliminate cyanotoxins in water using biologically enhanced biochar.
(2023)
Journal Article
Bio-based sustainable polymers and materials: from processing to biodegradation.
(2023)
Journal Article
Characterisation of microplastics is key for reliable data interpretation.
(2023)
Journal Article
About OpenAIR@RGU
Administrator e-mail: publications@rgu.ac.uk
This application uses the following open-source libraries:
Apache License Version 2.0 (http://www.apache.org/licenses/)
Apache License Version 2.0 (http://www.apache.org/licenses/)
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search