Skip to main content

Research Repository

Advanced Search

Graphitic-C3N4 coated floating glass beads for photocatalytic destruction of synthetic and natural organic compounds in water under UV light.

Hui, Jianing; Pestana, Carlos J.; Caux, Marine; Gunaratne, H.Q. Nimal; Edwards, Christine; Robertson, Peter K.J.; Lawton, Linda A.; Irvine, John T.S.

Authors

Jianing Hui

Marine Caux

H.Q. Nimal Gunaratne

Peter K.J. Robertson

John T.S. Irvine



Abstract

Many drinking water reservoirs can contain organic pollutants such as artificial synthesized dye and drugs. On the other hand, some naturally occurring microorganisms such as cyanobacteria, are capable of producing toxic secondary metabolites (cyanotoxins) causing detrimental health effects in humans and animals are also present in water reservoirs. Photocatalytic destruction of organic pollutants in-reservoir requires not only good photo-catalytically activity but also efficacy of distribution and recycling. We report here, a facile calcination method of coating graphitic carbon nitride (g-C3N4) onto porous glass beads. Influences of precursor and heating temperature on photocatalytic activity were evaluated by photocatalytic degradation of methyl orange. The yellow floating beads show comparable activity to P25 (TiO2) coated beads in the removal of two of the most frequently occurring cyanobacterial toxins, microcystin-LR and cylindrospermopsin, in artificial freshwater under UV light irradiation. Microcystin-LR was destroyed within 60 min and cylindrospermopsin was removed after 100 min UV irradiation. The coated g-C3N4 layer is very robust and shows negligible degradation on photocatalytic performance when recycled. The recycling of the photocatalyst is very simple because of the large size of the catalyst-coated beads. A large batch was successfully produced in a lab tube furnace. For further application, the ability of g-C3N4 absorbing visible light could pave the way to utilise sunlight for the destruction of toxins in the water.

Citation

HUI, J., PESTANA, C.J., CAUX, M., GUNARATNE, H.Q.N., EDWARDS, C., ROBERTSON, P.K.J., LAWTON, L.A. and IRVINE, J.T.S. 2020. Graphitic-C3N4 coated floating glass beads for photocatalytic destruction of synthetic and natural organic compounds in water under UV light. Journal of photochemistry and photobiology A: chemistry [online], 405, article ID 112935. Available from: https://doi.org/10.1016/j.jphotochem.2020.112935

Journal Article Type Article
Acceptance Date Sep 21, 2020
Online Publication Date Sep 28, 2020
Publication Date Jan 15, 2021
Deposit Date Oct 8, 2020
Publicly Available Date Sep 29, 2021
Journal Journal of Photochemistry and Photobiology A: Chemistry
Print ISSN 1010-6030
Publisher Elsevier
Peer Reviewed Peer Reviewed
Volume 405
Article Number 112935
DOI https://doi.org/10.1016/j.jphotochem.2020.112935
Keywords G-C3N4; Floating photocatalysts; Microcystin-LR; Cylindrospermopsin; Dye degradation
Public URL https://rgu-repository.worktribe.com/output/972141