INDIRA DE MENEZES CASTRO i.de-menezes-castro@rgu.ac.uk
Completed Research Student
Oxidative stress in the cyanobacterium microcystis aeruginosa PCC 7813: comparison of different analytical cell stress detection assays.
Menezes, Indira; Maxwell-McQueeney, Declan; Capelo-Neto, Jos�; Pestana, Carlos J.; Edwards, Christine; Lawton, Linda A.
Authors
Declan Maxwell-McQueeney
Jos� Capelo-Neto
Dr Carlos Pestana c.pestana@rgu.ac.uk
Lecturer
Professor Christine Edwards c.edwards@rgu.ac.uk
Professor
Professor Linda Lawton l.lawton@rgu.ac.uk
Professor
Abstract
Cyanobacterial blooms are observed when high cell densities occur and are often dangerous to human and animal health due to the presence of cyanotoxins. Conventional drinking water treatment technology struggles to efficiently remove cyanobacterial cells and their metabolites during blooms, increasing costs and decreasing water quality. Although field applications of hydrogen peroxide have been shown to successfully suppress cyanobacterial growth, a rapid and accurate measure of the effect of oxidative stress on cyanobacterial cells is required. In the current study, H2O2 (5 and 20 mg L-1) was used to induce oxidative stress in Microcystis aeruginosa PCC 7813. Cell density, quantum yield of photosystem II, minimal fluorescence and microcystin (MC-LR, -LY, -LW, -LF) concentrations were compared when evaluating M. aeruginosa cellular stress. Chlorophyll content (determined by minimal fluorescence) decreased by 10% after 48 hours while cell density was reduced by 97% after 24 hours in samples treated with 20 mg L-1 H2O2. Photosystem II quantum yield (photosynthetic activity) indicated cyanobacteria cell stress within 6 hours, which was considerably faster than the other methods. Intracellular microcystins (MC-LR, -LY, -LW and -LF) were reduced by at least 96% after 24 hours of H2O2 treatment. No increase in extracellular microcystin concentration was detected, which suggests that the intracellular microcystins released into the surrounding water were completely removed by the hydrogen peroxide. Thus, photosynthetic activity was deemed the most suitable and rapid method for oxidative cell stress detection in cyanobacteria, however, an approach using combined methods is recomended for efficient water treatment management.
Citation
MENEZES, I., MAXWELL-MCQUEENEY, D., CAPELO-NETO, J., PESTANA, C.J., EDWARDS, C. and LAWTON, L.A. 2021. Oxidative stress in the cyanobacterium Microcystis aeruginosa PCC 7813: comparison of different analytical cell stress detection assays. Chemosphere [online], 269, article ID 128766. Available from: https://doi.org/10.1016/j.chemosphere.2020.128766
Journal Article Type | Article |
---|---|
Acceptance Date | Oct 25, 2020 |
Online Publication Date | Oct 28, 2020 |
Publication Date | Apr 30, 2021 |
Deposit Date | Oct 30, 2020 |
Publicly Available Date | Oct 29, 2021 |
Journal | Chemosphere |
Print ISSN | 0045-6535 |
Electronic ISSN | 1879-1298 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 269 |
Article Number | 128766 |
DOI | https://doi.org/10.1016/j.chemosphere.2020.128766 |
Keywords | Cyanobacteria; Fluorescence; Microcystin; Water treatment; Hydrogen peroxide |
Public URL | https://rgu-repository.worktribe.com/output/979550 |
Files
MENEZES 2021 Oxidative stress
(1.5 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by-nc-nd/4.0/
You might also like
Aging microplastics enhances the adsorption of pharmaceuticals in freshwater.
(2023)
Journal Article
Photocatalytic conversion of cellulose into C5 oligosaccharides.
(2023)
Journal Article
Nature-based solution to eliminate cyanotoxins in water using biologically enhanced biochar.
(2023)
Journal Article
Bio-based sustainable polymers and materials: from processing to biodegradation.
(2023)
Journal Article
Downloadable Citations
About OpenAIR@RGU
Administrator e-mail: publications@rgu.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search