Skip to main content

Research Repository

Advanced Search

All Outputs (103)

Upgrading biogas to a bio-methane by use of nano-structured ceramic membranes.
Presentation / Conference Contribution
OGUNLUDE, P., ABUNUMAH, O., ORAKWE, I., SHEHU, H., MUHAMMAD-SUKKI, F., and GOBINA, E. 2019. Upgrading biogas to a bio-methane by use of nano-structured ceramic membranes. In Cossu, R., He, P., Kjeldsen, P., Matsufuji, Y. and Stegmann, R. (eds.). Proceedings of the 17th International waste management and landfill symposium (sardinia 2019), Cagliari, Italy. Padova: CISA [online], article 598. Available from: https://cisapublisher.com/product/proceedings-sardinia-2019/

In order to meet the demands of growing economies while considering environmental implications, the use of clean and renewable sources of energy has increasingly become of interest. Biogas utilisation is a means by which these rising needs can be met... Read More about Upgrading biogas to a bio-methane by use of nano-structured ceramic membranes..

Advanced membrane design for improved carbon dioxide capture.
Presentation / Conference Contribution
NWOGU, N.C. and GOBINA, E. 2013. Advanced membrane design for improved carbon dioxide capture. In Laudon, M., Romanowicz, B.F. and NSTI. (eds.) TechConnect briefs: Nanotechnology 2013, vol 3: bio sensors, instruments, medical, environment and energy: technical proceedings of the 2013 NSTI (Nano Science and Technology Institute) Nanotechnology conference and expo, 12-16 May 2013, Washington, USA. Boston, MA: TechConnect [online], pages 708-711. Available from: https://briefs.techconnect.org/wp-content/volumes/Nanotech2013v3/pdf/415.pdf

A nano-structure tubular hybrid inorganic membrane capable of stripping carbon dioxide from flue gas stream was designed and tested at laboratory scale to improve compliance to various environmental regulations to cushion the effect of global warming... Read More about Advanced membrane design for improved carbon dioxide capture..

Advanced membrane design for improved carbon dioxide capture.
Presentation / Conference Contribution
NWOGU, N.C. and GOBINA, E. 2013. Advanced membrane design for improved carbon dioxide capture. In Laudon, M. and Romanowicz, B. (eds.) TechConnect briefs: technical proceedings of the 2013 Clean technology and trade show: energy, renewables, materials, storage and environment, 12-16 May 2013, Washington, USA. Boston, MA: TechConnect [online], pages 204-207. Available from: https://briefs.techconnect.org/wp-content/volumes/Cleantech2013/pdf/415.pdf

A nano-structure tubular hybrid inorganic membrane capable of stripping carbon dioxide from flue gas stream was designed and tested at laboratory scale to improve compliance to various environmental regulations to cushion the effect of global warming... Read More about Advanced membrane design for improved carbon dioxide capture..

A study of gas transport mechanisms for CH4/CO2 using ceramic membranes.
Presentation / Conference Contribution
OGUNLUDE, P., ABUNUMAH, O., MUHAMMAD-SUKKI, F. and GOBINA, E. 2021. A study of gas transport mechanisms for CH4/CO2 using ceramic membranes. Crystals [online], 11(10): selected papers from 8th International conference and exhibition on advanced and nanomaterials 2021 (ICANM 2021), 9-11 August 2021, [virtual conference], article 1224. Available from: https://doi.org/10.3390/cryst11101224

Greenhouse gas emissions (GHGs) and their effects have been a matter of global concern over the past decade. As the demand for energy grows in developing economies, there has been a challenge in harnessing and utilising sustainable forms of energy to... Read More about A study of gas transport mechanisms for CH4/CO2 using ceramic membranes..

The effect of pressure and porous media structural parameters coupling on gas apparent viscosity.
Presentation / Conference Contribution
ABUNUMAH, O., OGUNLUDE, P. and GOBINA, E. 2021. The effect of pressure and porous media structural parameters coupling on gas apparent viscosity. In Proceedings of the ICANM 2021: 8th International conference and exhibition on advanced and nanomaterials 2021 (ICANM 2021), 9-11 August 2021, [virtual conference]. Ontario: ICANM, pages 42-46.

Crude oil production is still considered a significant contributor to global energy security. To improve oil production, gases such as CH4, N2, Air and CO2 are injected into oil reservoirs in a process called gas Enhanced Oil Recovery (EOR). Authors... Read More about The effect of pressure and porous media structural parameters coupling on gas apparent viscosity..

A study of biogas upgrading to bio-methane with carbon dioxide capture using ceramic membranes.
Presentation / Conference Contribution
OGUNLUDE, P., ABUNUMAH, O., MOHAMMAD-SUKKI, F. and GOBINA, E. 2021. A study of biogas upgrading to bio-methane with carbon dioxide capture using ceramic membranes. In Proceedings of the ICANM 2021: 8th International conference and exhibition on advanced and nanomaterials 2021 (ICANM 2021), 9-11 August 2021, [virtual conference]. Ontario: IAEMM, pages 27-33.

Greenhouse gas emissions (GHGs) and their effects have been a matter of global concern over the past decade. With growing energy demands to support developing economies, there has been a challenge of harnessing and utilizing sustainable forms of ener... Read More about A study of biogas upgrading to bio-methane with carbon dioxide capture using ceramic membranes..

Predicting multicomponent gas transport in hybrid inorganic membranes.
Presentation / Conference Contribution
GOBINA, E., SHEHU, H. and ORAKWE, I. 2021. Predicting multicomponent gas transport in hybrid inorganic membranes. In Proceedings of the ICANM 2021: 8th International conference and exhibition on advanced and nanomaterials 2021 (ICANM 2021), 9-11 August 2021, [virtual conference]. Ontario: ICANM, pages 47-56.

A repeated dip-coating technique has been used to prepare novel inorganic multilayered membranes. The membranes have been characterizated by Scanning Electron Microscopy (SEM) and nitrogen adsorption (ASAP 2010) respectively. The three-parameter mode... Read More about Predicting multicomponent gas transport in hybrid inorganic membranes..

Characterization and evaluation of nanoparticles ceramic membrane for the separation of oil-in-water emulsion.
Presentation / Conference Contribution
AISUENI, F.A., OGUON, E., HASHIM, I. and GOBINA, E. 2021. Characterization and evaluation of nanoparticles ceramic membrane for the separation of oil-in-water emulsion. In Proceedings of the ICANM 2021: 8th International conference and exhibition on advanced and nanomaterials 2021 (ICANM 2021), 9-11 August 2021, [virtual conference]. Ontario: ICANM, pages 17-26.

The mixture of oil with water from industrial activities creates an emulsion which is now termed as Oil-in-Water (O/W) emulsion. Several chemical and physical methods have been successfully used for the separation of O/W emulsions; however, the trace... Read More about Characterization and evaluation of nanoparticles ceramic membrane for the separation of oil-in-water emulsion..

Predicting CO2 and CH4 transport in landfill gas using porous inorganic membranes operated in the Darcy regime.
Presentation / Conference Contribution
GOBINA, E., OGUNLUDE, P., ABUNUMAH, O., GIWA, A. and MUHAMMAD-SUKKI, F. 2021. Predicting CO2 and CH4 transport in landfill gas using porous inorganic membranes operated in the Darcy regime. In Proceedings of 2021 International congress of Scientific Advances (ICONSAD'21), 22-25 December 2021, [virtual conference]. Turkey: ICONSAD [online], pages 770-784. Available from: https://tinyurl.com/2p8uy2rh

The present work is focusing on the utilization of previously fabricated membrane to study the effect of pressure drop and temperature on permeability. Mass transfer considerations were used under previously optimized conditions. Subsequently, gas pe... Read More about Predicting CO2 and CH4 transport in landfill gas using porous inorganic membranes operated in the Darcy regime..

Development of dense membranes for high-density hydrogen production from ammonia catalytic decomposition (cracking) for PEM fuel cells power in long-haul passenger aircraft transportation.
Presentation / Conference Contribution
SHEHU, H., ORAKWE, I., ABUNOMAH, O., OGUNLUDE, P., OGOUN, E., RAMALAN, M., AISUENI, F., OKO, E., IBHADON, A., GAD-BRIGGS, A., GIANNOPOULOS, I., GIWA, A. and GOBINA, E. 2022. Development of dense membranes for high-density hydrogen production from ammonia catalytic decomposition (cracking) for PEM fuel cells power in long-haul passenger aircraft transportation. Techconnect briefs 2022: papers from 2022 TechConnect world innovation conference and expo, 13-15 June 2022, Washington, USA. Danville: TechConnect [online], pages 134-137. Available from: https://briefs.techconnect.org/wp-content/volumes/TCB2022/pdf/310.pdf

Aviation is a major greenhouse gas contributor responsible for around 3.2% of global CO2 emissions to the atmosphere. That corresponds to over than 1 billion metric tons of carbon (A metric ton is slightly smaller than the American imperial ton—but t... Read More about Development of dense membranes for high-density hydrogen production from ammonia catalytic decomposition (cracking) for PEM fuel cells power in long-haul passenger aircraft transportation..

The quantitative effect of flow direction on gas permeation in ceramic membrane.
Presentation / Conference Contribution
RAMALAN, M.M., PRABHU, R., HASHIM, I., OGUNLUDE, P., OGOUN, E., AISUENI, F., ABUNOMAH, O., GIWA, A. and GOBINA, E. 2022. The quantitative effect of flow direction on gas permeation in ceramic membrane. In Techconnect briefs 2022: papers from 2022 TechConnect world innovation conference and expo, 13-15 June 2022, Washington, USA. Danville: TechConnect [online], pages 55-58. Available from: https://briefs.techconnect.org/wp-content/volumes/TCB2022/pdf/358.pdf

The effect of flow direction in radial porous ceramic membrane has been extensively studied. Understanding fluid flow through membrane has offered utility to a number of industrial processes such as gas separation, catalytic reactions, enhanced oil r... Read More about The quantitative effect of flow direction on gas permeation in ceramic membrane..

Using nanoporous core-samples to mimic the effect of petrophysical parameters on natural gas flowrate in an unconventional gas reservoir.
Presentation / Conference Contribution
OGOUN, E., ABUNUMAH, O., AISUENI, F., HOSSAIN, M., GIWA, A. and GOBINA, E. 2022. Using nanoporous core-samples to mimic the effect of petrophysical parameters on natural gas flowrate in an unconventional gas reservoir. In Techconnect briefs 2022: papers from 2022 TechConnect world innovation conference and expo, 13-15 June 2022, Washington, USA. Danville: TechConnect [online], pages 67-70. Available from: https://briefs.techconnect.org/wp-content/volumes/TCB2022/pdf/352.pdf

Natural gas was for quite a long time regarded as an unwanted by-product of oil exploration and production that was mostly flared to the atmosphere. This happened because there was no feasible economic means of bringing it to the market. In this work... Read More about Using nanoporous core-samples to mimic the effect of petrophysical parameters on natural gas flowrate in an unconventional gas reservoir..

Using contact angle measurements for determination of the surface free energy of the ceramic membranes.
Presentation / Conference Contribution
HASHIM, I.A., AISUENI, F., OGUNLUDE, P., RAMALAN, M., OGOUN, E., HUSSAINI, M. and GOBINA, E. 2022. Using contact angle measurements for determination of the surface free energy of the ceramic membranes. In Techconnect briefs 2022: papers from 2022 TechConnect world innovation conference and expo, 13-15 June 2022, Washington, USA. Danville: TechConnect [online], pages 5-8. Available from: https://briefs.techconnect.org/wp-content/volumes/TCB2022/pdf/177.pdf

The surface free energy is one of the factors that characterises the surfaces of materials. The sessile drop method is the most popular method for determining its value. A contact angle between the surface and the edge of liquid droplets is measured... Read More about Using contact angle measurements for determination of the surface free energy of the ceramic membranes..

Reservoir structural strategies on the integrity of gas mobility ratio.
Presentation / Conference Contribution
ABUNUMAH, O., OGUNLUDE, P., GOBINA, E. and GIWA, A. 2022. Reservoir structural strategies on the integrity of gas mobility ratio. In Techconnect briefs 2022: papers from 2022 TechConnect world innovation conference and expo, 13-15 June 2022, Washington, USA. Danville: TechConnect [online], pages 39-42. Available from: https://briefs.techconnect.org/wp-content/volumes/TCB2022/pdf/187.pdf

In this study, four commonly injected EOR gases, CH4, N2, Air, and CO2, have been simultaneously investigated through an experimental method to determine the effect and correlational relevance of 28 structural and 22 fluid quantities to mobility rati... Read More about Reservoir structural strategies on the integrity of gas mobility ratio..

An experimental study on the effect of methane potent biogas mixture on gas permeation mechanism.
Presentation / Conference Contribution
OGUNLUDE, P., HASHIM, I., RAMALAN, M., OGOUN, E., MUHAMMAD-SUKKI, F., GIWA, A. and GOBINA, E. 2022. An experimental study on the effect of methane potent biogas mixture on gas permeation mechanism. In Techconnect briefs 2022: papers from 2022 TechConnect world innovation conference and expo, 13-15 June 2022, Washington, USA. Danville: TechConnect [online], pages 43-46. Available from: https://briefs.techconnect.org/wp-content/volumes/TCB2022/pdf/188.pdf

This study focuses on the use of composite alumina membranes for the separation of carbon dioxide from methane. The technique can be applied to pre, post and oxycombustion operations in industry and would be particularly useful in mitigating the effe... Read More about An experimental study on the effect of methane potent biogas mixture on gas permeation mechanism..

Experimental determination of carbon capture and sequestration response to reservoir quantities.
Presentation / Conference Contribution
ABUNUMAH, O., OGUNLUDE, P., GOBINA, E. and GIWA, A. 2022. Experimental determination of carbon sequestration response to reservoir quantities. In Techconnect briefs 2022: papers from 2022 TechConnect world innovation conference and expo, 13-15 June 2022, Washington, USA. Danville: TechConnect [online], pages 47-50. Available from: https://briefs.techconnect.org/wp-content/volumes/TCB2022/pdf/423.pdf

Reservoir entities can be classified into geological, geometrical and fluidic. To complicate matters, reservoirs are usually set in geological layers, such that each layer interacts with injected and resident fluids differently. Carbon dioxide (CO2)... Read More about Experimental determination of carbon capture and sequestration response to reservoir quantities..

Effect of pore size and porosity on contact angle of ceramic membrane for oil-in-water emulsion separation.
Presentation / Conference Contribution
AISUENI, F., ABUNUMAH, O., HASHIM, I., RAMALAN, M., OGOUN, E., PRABHU, R., GIWA, A. and GOBINA, E. 2022. Effect of pore size and porosity on contact angle of ceramic membrane for oil-in-water emulsion separation. In Techconnect briefs 2022: papers from 2022 TechConnect world innovation conference and expo, 13-15 June 2022, Washington, USA. Danville: TechConnect [online], pages 59-62. Available from: https://briefs.techconnect.org/wp-content/volumes/TCB2022/pdf/174.pdf

The main objective of this work is to study the effect of pore size and porosity on contact angle of ceramic membrane (CM) for Oil-in-water (O/W) emulsion separation. This would include using commercially produced unmodified CM pore size 6000nm and 1... Read More about Effect of pore size and porosity on contact angle of ceramic membrane for oil-in-water emulsion separation..

Direct oxygen air capture using pressure-driven ion transport membranes: membrane support evaluation.
Presentation / Conference Contribution
ANTWI, S.W., GIWA, A. and GOBINA, E. 2022. Direct oxygen air capture using pressure-driven ion transport membranes: membrane support evaluation. In Techconnect briefs 2022: papers from 2022 TechConnect world innovation conference and expo, 13-15 June 2022, Washington, USA. Danville: TechConnect [online], pages 63-66. Available from: https://briefs.techconnect.org/wp-content/volumes/TCB2022/pdf/329.pdf

As membrane technology has progressed in separation processes, it earns the attentiveness from industrial and academic to investigate the practicality of membrane in gas separation. This presentation centres on building ceramic membranes to yield oxy... Read More about Direct oxygen air capture using pressure-driven ion transport membranes: membrane support evaluation..

Characterization of membranes for advanced direct carbon capture.
Presentation / Conference Contribution
HASHIM, I.A., AISUENI, F., ABUNOMAH, O., OGUNLUDE, P., RAMALAN, M., OGOUN, E. and GOBINA, E. 2022. Characterization of membranes for advanced direct air carbon capture. In Techconnect briefs 2022: papers from 2022 TechConnect world innovation conference and expo, 13-15 June 2022, Washington, USA. Danville: TechConnect [online], pages 148-151. Available from: https://briefs.techconnect.org/wp-content/volumes/TCB2022/pdf/386.pdf

Carbon capture is essential for lowering anthropogenic carbon emissions and, as a result, limiting global warming. Membrane technology has a lot of potential for extremely efficient carbon capture because of its energy-efficient and environmentally f... Read More about Characterization of membranes for advanced direct carbon capture..

Microporous alumina–silica composite membrane with very low N2 permeability but high CO2 selectivity for direct air capture.
Presentation / Conference Contribution
GIWA, A., SHEHU, H., RAMALAN, M., ORAKWE, I., ABUNOMAH, O., OGUNLUDE, P., WILLIAMWEST, T., IGBAGARA, W., OGOUN, E., HASHIM, I., AISUENI, F. and GOBINA, E. 2022. Microporous alumina–silica composite membrane with very low N2 permeability but high CO2 selectivity for direct air capture. In Khan, A.A., Ciddi, M.L. and Unal, M. (eds.) Proceedings of the 2022 International conference on studies in engineering, science and technology (ICSEST 2022), 10-13 November 2022, Antalya, Turkey. Ames, IA: International Society for Technology, Education and Science (ISTES) [online], pages 182-210. Available from: https://www.istes.org/seeder/books/files/54c86815762a9dac0440e35d04a1e05c.pdf

This research involves technical approaches to capture carbon dioxide (CO2) from ambient air, involving a filter with a transport mechanism described based on experimental results. A silica inorganic composite membrane was prepared by using a silicon... Read More about Microporous alumina–silica composite membrane with very low N2 permeability but high CO2 selectivity for direct air capture..