Skip to main content

Research Repository

Advanced Search

Professor Nirmalie Wiratunga


Effectiveness of app-delivered, tailored self-management support for adults with lower back pain-related disability: a selfBACK randomized clinical trial. (2021)
Journal Article
SANDAL, L.F., BACH, K., ØVERÅS, C.K., WIRATUNGA, N., COOPER, K, et al. 2021. Effectiveness of app-delivered, tailored self-management support for adults with lower back pain-related disability: a selfBACK randomized clinical trial. JAMA internal medicine [online], 181(10), pages 1288-1296. Available from: https://doi.org/10.1001/jamainternmed.2021.4097

Importance: Lower back pain (LBP) is a prevalent and challenging condition in primary care. The effectiveness of an individually tailored self-management support tool delivered via a smartphone app has not been rigorously tested. Objective: To invest... Read More about Effectiveness of app-delivered, tailored self-management support for adults with lower back pain-related disability: a selfBACK randomized clinical trial..

Counterfactual explanations for student outcome prediction with Moodle footprints. (2021)
Conference Proceeding
WIJEKOON, A., WIRATUNGA, N., NKILSI-ORJI, I., MARTIN, K., PALIHAWADANA, C. and CORSAR, D. 2021. Counterfactual explanations for student outcome prediction with Moodle footprints. In Martin, K., Wiratunga, N. and Wijekoon, A. (eds.) SICSA XAI workshop 2021: proceedings of 2021 SICSA (Scottish Informatics and Computer Science Alliance) eXplainable artificial intelligence workshop (SICSA XAI 2021), 1st June 2021, [virtual conference]. CEUR workshop proceedings, 2894. Aachen: CEUR-WS [online], session 1, pages 1-8. Available from: http://ceur-ws.org/Vol-2894/short1.pdf

Counterfactual explanations focus on “actionable knowledge” to help end-users understand how a machine learning outcome could be changed to one that is more desirable. For this purpose a counterfactual explainer needs to be able to reason with simila... Read More about Counterfactual explanations for student outcome prediction with Moodle footprints..

Non-deterministic solvers and explainable AI through trajectory mining. (2021)
Conference Proceeding
FYVIE, M., MCCALL, J.A.W. and CHRISTIE, L.A. 2021. Non-deterministic solvers and explainable AI through trajectory mining. In Martin, K., Wiratunga, N. and Wijekoon, A. (eds.) SICSA XAI workshop 2021: proceedings of 2021 SICSA (Scottish Informatics and Computer Science Alliance) eXplainable artificial intelligence workshop (SICSA XAI 2021), 1st June 2021, [virtual conference]. CEUR workshop proceedings, 2894. Aachen: CEUR-WS [online], session 4, pages 75-78. Available from: http://ceur-ws.org/Vol-2894/poster2.pdf

Traditional methods of creating explanations from complex systems involving the use of AI have resulted in a wide variety of tools available to users to generate explanations regarding algorithm and network designs. This however has traditionally bee... Read More about Non-deterministic solvers and explainable AI through trajectory mining..

Similarity and explanation for dynamic telecommunication engineer support. (2021)
Thesis
MARTIN, K. 2021. Similarity and explanation for dynamic telecommunication engineer support. Robert Gordon University, PhD thesis. Hosted on OpenAIR [online]. Available from: https://doi.org/10.48526/rgu-wt-1447160

Understanding similarity between different examples is a crucial aspect of Case-Based Reasoning (CBR) systems, but learning representations optimised for similarity comparisons can be difficult. CBR systems typically rely on separate algorithms to le... Read More about Similarity and explanation for dynamic telecommunication engineer support..

Personalised exercise recognition towards improved self-management of musculoskeletal disorders. (2021)
Thesis
WIJEKOON, A. 2021. Personalised exercise recognition towards improved self-management of musculoskeletal disorders. Robert Gordon University, PhD thesis. Hosted on OpenAIR [online]. Available from: https://doi.org/10.48526/rgu-wt-1358224

Musculoskeletal Disorders (MSD) have been the primary contributor to the global disease burden, with increased years lived with disability. Such chronic conditions require self-management, typically in the form of maintaining an active lifestyle whil... Read More about Personalised exercise recognition towards improved self-management of musculoskeletal disorders..

Evaluating explainability methods intended for multiple stakeholders. (2021)
Journal Article
MARTIN, K., LIRET, A., WIRATUNGA, N., OWUSU, G. and KERN, M. 2021. Evaluating explainability methods intended for multiple stakeholders. KI - Künstliche Intelligenz [online], 35(3-4), pages 397-411. Available from: https://doi.org/10.1007/s13218-020-00702-6

Explanation mechanisms for intelligent systems are typically designed to respond to specific user needs, yet in practice these systems tend to have a wide variety of users. This can present a challenge to organisations looking to satisfy the explanat... Read More about Evaluating explainability methods intended for multiple stakeholders..

Learning to compare with few data for personalised human activity recognition. (2020)
Conference Proceeding
WIRATUNGA, N., WIJEKOON, A. and COOPER, K. 2020. Learning to compare with few data for personalised human activity recognition. In Watson, I and Weber, R. (eds.) Case-based reasoning research and development: proceedings of the 28th International conference on case-based reasoning research and development (ICCBR 2020), 8-12 June 2020, Salamanca, Spain [virtual conference]. Lecture notes in computer science, 12311. Cham: Springer [online], pages 3-14. Available from: https://doi.org/10.1007/978-3-030-58342-2_1

Recent advances in meta-learning provides interesting opportunities for CBR research, in similarity learning, case comparison and personalised recommendations. Rather than learning a single model for a specific task, meta-learners adopt a generalist... Read More about Learning to compare with few data for personalised human activity recognition..

Assessing the clinicians’ pathway to embed artificial intelligence for assisted diagnostics of fracture detection. (2020)
Conference Proceeding
MORENO-GARCÍA, C.F., DANG, T., MARTIN, K., PATEL, M., THOMPSON, A., LEISHMAN, L. and WIRATUNGA, N. 2020. Assessing the clinicians’ pathway to embed artificial intelligence for assisted diagnostics of fracture detection. In Bach, K., Bunescu, R., Marling, C. and Wiratunga, N. (eds.) Knowledge discovery in healthcare data 2020: proceedings of the 5th Knowledge discovery in healthcare data international workshop 2020 (KDH 2020), co-located with 24th European Artificial intelligence conference (ECAI 2020), 29-30 August 2020, [virtual conference]. CEUR workshop proceedings, 2675. Aachen: CEUR-WS [online], pages 63-70. Available from: http://ceur-ws.org/Vol-2675/paper10.pdf

Fracture detection has been a long-standingparadigm on the medical imaging community. Many algo-rithms and systems have been presented to accurately detectand classify images in terms of the presence and absence offractures in different parts of the... Read More about Assessing the clinicians’ pathway to embed artificial intelligence for assisted diagnostics of fracture detection..

Usability and acceptability of an app (SELFBACK) to support self-management of low back pain: mixed methods study. (2020)
Journal Article
NORDSTOGA, A.L., BACH, K., SANI, S., WIRATUNGA, N., MORK, P.J., VILLUMSEN, M. and COOPER, K. 2020. Usability and acceptability of an app (SELFBACK) to support self-management of low back pain: mixed methods study. JMIR rehabilitation and assistive technologies [online], 7(2), article number e18729. Available from: https://doi.org/10.2196/18729

Self-management is the key recommendation for managing non-specific low back pain (LBP). However, there are well-documented barriers to self-management, therefore methods of facilitating adherence are required. Smartphone apps are increasingly being... Read More about Usability and acceptability of an app (SELFBACK) to support self-management of low back pain: mixed methods study..

Heterogeneous multi-modal sensor fusion with hybrid attention for exercise recognition. (2020)
Conference Proceeding
WIJEKOON, A., WIRATUNGA, N. and COOPER, K. 2020. Heterogeneous multi-modal sensor fusion with hybrid attention for exercise recognition. In Proceedings of the 2020 Institute of Electrical and Electronics Engineers (IEEE) International joint conference on neural networks (IEEE IJCNN 2020), part of the 2020 IEEE World congress on computational intelligence (IEEE WCCI 2020) and co-located with the 2020 IEEE congress on evolutionary computation (IEEE CEC 2020) and the 2020 IEEE International fuzzy systems conference (FUZZ-IEEE 2020), 19-24 July 2020, [virtual conference]. Piscataway: IEEE [online], article ID 9206941. Available from: https://doi.org/10.1109/IJCNN48605.2020.9206941

Exercise adherence is a key component of digital behaviour change interventions for the self-management of musculoskeletal pain. Automated monitoring of exercise adherence requires sensors that can capture patients performing exercises and Machine Le... Read More about Heterogeneous multi-modal sensor fusion with hybrid attention for exercise recognition..