Skip to main content

Research Repository

Advanced Search

Professor Nirmalie Wiratunga's Outputs (113)

Integrating selection-based aspect sentiment and preference knowledge for social recommender systems. (2019)
Journal Article
CHEN, Y.Y., WIRATUNGA, N. and LOTHIAN, R. 2020. Integrating selection-based aspect sentiment and preference knowledge for social recommender systems. Online information review [online], 44(2), pages 399-416. Available from: https://doi.org/10.1108/OIR-02-2017-0066

Purpose: Recommender system approaches such as collaborative and content-based filtering rely on user ratings and product descriptions to recommend products. More recently, recommender system research has focussed on exploiting knowledge from user-ge... Read More about Integrating selection-based aspect sentiment and preference knowledge for social recommender systems..

Developing a catalogue of explainability methods to support expert and non-expert users. (2019)
Presentation / Conference Contribution
MARTIN, K., LIRET, A., WIRATUNGA, N., OWUSU, G. and KERN, M. 2019. Developing a catalogue of explainability methods to support expert and non-expert users. In Bramer, M. and Petridis, M. (eds.) Artificial intelligence XXXVI: proceedings of the 39th British Computer Society's Specialist Group on Artificial Intelligence (SGAI) international Artificial intelligence conference 2019 (AI 2019), 17-19 December 2019, Cambridge, UK. Lecture notes in computer science, 11927. Cham: Springer [online], pages 309-324. Available from: https://doi.org/10.1007/978-3-030-34885-4_24

Organisations face growing legal requirements and ethical responsibilities to ensure that decisions made by their intelligent systems are explainable. However, provisioning of an explanation is often application dependent, causing an extended design... Read More about Developing a catalogue of explainability methods to support expert and non-expert users..

Learning to self-manage by intelligent monitoring, prediction and intervention. (2019)
Presentation / Conference Contribution
WIRATUNGA, N., CORSAR, D., MARTIN, K., WIJEKOON, A., ELYAN, E., COOPER, K., IBRAHIM, Z., CELIKTUTAN, O., DOBSON, R.J., MCKENNA, S., MORRIS, J., WALLER, A., ABD-ALHAMMED, R., QAHWAJI, R. and CHAUDHURI, R. 2019. Learning to self-manage by intelligent monitoring, prediction and intervention. In Wiratunga, N., Coenen, F. and Sani, S. (eds.) Proceedings of the 4th International workshop on knowledge discovery in healthcare data (KDH 2019), co-located with the 28th International joint conference on artificial intelligence (IJCAI-19), 10-11 August 2019, Macao, China. CEUR workshop proceedings, 2429. Aachen: CEUR-WS [online], pages 60-67. Available from: http://ceur-ws.org/Vol-2429/paper10.pdf

Despite the growing prevalence of multimorbidities, current digital self-management approaches still prioritise single conditions. The future of out-of-hospital care requires researchers to expand their horizons; integrated assistive technologies sho... Read More about Learning to self-manage by intelligent monitoring, prediction and intervention..

Representation and learning schemes for argument stance mining. (2019)
Thesis
CLOS, J. 2019. Representation and learning schemes for argument stance mining. Robert Gordon University [online], PhD thesis. Available from: https://openair.rgu.ac.uk

Argumentation is a key part of human interaction. Used introspectively, it searches for the truth, by laying down argument for and against positions. As a mediation tool, it can be used to search for compromise between multiple human agents. For this... Read More about Representation and learning schemes for argument stance mining..

Aspect-based sentiment analysis for social recommender systems. (2019)
Thesis
CHEN, Y.Y. 2019. Aspect-based sentiment analysis for social recommender systems. Robert Gordon University [online], PhD thesis. Available from: https://openair.rgu.ac.uk

Social recommender systems harness knowledge from social content, experiences and interactions to provide recommendations to users. The retrieval and ranking of products, using similarity knowledge, is central to the recommendation architecture. To e... Read More about Aspect-based sentiment analysis for social recommender systems..

Ontology driven information retrieval. (2019)
Thesis
NKISI-ORJI, I. 2019. Ontology driven information retrieval. Robert Gordon University [online], PhD thesis. Available from: https://openair.rgu.ac.uk

Ontology-driven information retrieval deals with the use of entities specified in domain ontologies to enhance search and browse. The entities or concepts of lightweight ontological resources are traditionally used to index resources in specialised d... Read More about Ontology driven information retrieval..

Ontology alignment based on word embedding and random forest classification. (2019)
Presentation / Conference Contribution
NKISI-ORJI, I., WIRATUNGA, N., MASSIE, S., HUI, K.-Y. and HEAVEN, R. 2019. Ontology alignment based on word embedding and random forest classification. In Berlingerio, M., Bonchi, F., Gärtner, T., Hurley, N. and Ifrim, G. (eds.) Machine learning and knowledge discovery in databases: proceedings of the 2018 European conference on machine learning and principles and practice of knowledge discovery in databases (ECML PKDD 2018), 10-14 September 2018, Dublin, Ireland. Lecture notes in computer science, 11051. Cham: Springer [online], part I, pages 557-572. Available from: https://doi.org/10.1007/978-3-030-10925-7_34

Ontology alignment is crucial for integrating heterogeneous data sources and forms an important component for realising the goals of the semantic web. Accordingly, several ontology alignment techniques have been proposed and used for discovering corr... Read More about Ontology alignment based on word embedding and random forest classification..

Informed pair selection for self-paced metric learning in Siamese neural networks. (2018)
Presentation / Conference Contribution
MARTIN, K., WIRATUNGA, N., MASSIE, S. and CLOS, J. 2018. Informed pair selection for self-paced metric learning in Siamese neural networks. In Bramer, M. and Petridis, M. (eds.) Artificial intelligence XXXV: proceedings of the 38th British Computer Society's Specialist Group on Artificial Intelligence (SGAI) International conference on innovative techniques and applications of artificial intelligence (AI-2018), 11-13 December 2018, Cambridge, UK. Lecture notes in computer science, 11311. Cham: Springer [online], pages 34-49. Available from: https://doi.org/10.1007/978-3-030-04191-5_3

Siamese Neural Networks (SNNs) are deep metric learners that use paired instance comparisons to learn similarity. The neural feature maps learnt in this way provide useful representations for classification tasks. Learning in SNNs is not reliant on e... Read More about Informed pair selection for self-paced metric learning in Siamese neural networks..

Risk information recommendation for engineering workers. (2018)
Presentation / Conference Contribution
MARTIN, K., LIRET, A., WIRATUNGA, N., OWUSU, G. and KERN, M. 2018. Risk information recommendation for engineering workers. In Bramer, M. and Petridis, M. (eds.) Artificial intelligence XXXV: proceedings of the 38th British Computer Society's Specialist Group on Artificial Intelligence (SGAI) International conference on innovative techniques and applications of artificial intelligence (AI-2018), 11-13 December 2018, Cambridge, UK. Lecture notes in computer science, 11311. Cham: Springer [online], pages 311-325. Available from: https://doi.org/10.1007/978-3-030-04191-5_27

Within any sufficiently expertise-reliant and work-driven domain there is a requirement to understand the similarities between specific work tasks. Though mechanisms to develop similarity models for these areas do exist, in practice they have been cr... Read More about Risk information recommendation for engineering workers..

GramError: a quality metric for machine generated songs. (2018)
Presentation / Conference Contribution
DAVIES, C., WIRATUNGA, N. and MARTIN, K. 2018. GramError: a quality metric for machine generated songs. In Bramer, M. and Petridis, M. (eds.) Artificial intelligence XXXV: proceedings of the 38th British Computer Society's Specialist Group on Artificial Intelligence (SGAI) International conference on innovative techniques and applications of artificial intelligence (AI-2018), 11-13 December 2018, Cambridge, UK. Lecture notes in computer science, 11311. Cham: Springer [online], pages 184-190. Available from: https://doi.org/10.1007/978-3-030-04191-5_16

This paper explores whether a simple grammar-based metric can accurately predict human opinion of machine-generated song lyrics quality. The proposed metric considers the percentage of words written in natural English and the number of grammatical er... Read More about GramError: a quality metric for machine generated songs..

Context extraction for aspect-based sentiment analytics: combining syntactic, lexical and sentiment knowledge. (2018)
Presentation / Conference Contribution
BANDHAKAVI, A., WIRATUNGA, N., MASSIE, S. and LUHAR, R. 2018. Context extraction for aspect-based sentiment analytics: combining syntactic, lexical and sentiment knowledge. In Bramer, M. and Petridis, M. (eds.) Artificial intelligence xxxv: proceedings of the 38th British Computer Society's Specialist Group on Artificial Intelligence (SGAI) International conference on innovative techniques and applications of artificial intelligence (AI-2018), 11-13 December 2018, Cambridge, UK. Lecture notes in artificial intelligence, 11311. Cham: Springer [online], pages 357-371. Available from: https://doi.org/10.1007/978-3-030-04191-5_30

Aspect-level sentiment analysis of customer feedback data when done accurately can be leveraged to understand strong and weak performance points of businesses and services and also formulate critical action steps to improve their performance. In this... Read More about Context extraction for aspect-based sentiment analytics: combining syntactic, lexical and sentiment knowledge..

Emotion-aware polarity lexicons for Twitter sentiment analysis. (2018)
Journal Article
BANDHAKAVI, A., WIRATUNGA, N., MASSIE, S. and P, D. 2021. Emotion-aware polarity lexicons for Twitter sentiment analysis. Expert systems [online], 38(7): artificial intelligence/EDMA 2017, article e12332. Available from: https://doi.org/10.1111/exsy.12332

Theoretical frameworks in psychology map the relationships between emotions and sentiments. In this paper we study the role of such mapping for computational emotion detection from text (e.g. social media) with a aim to understand the usefulness of a... Read More about Emotion-aware polarity lexicons for Twitter sentiment analysis..

Improving kNN for human activity recognition with privileged learning using translation models. (2018)
Presentation / Conference Contribution
WIJEKOON, A., WIRATUNGA, N., SANI, S., MASSIE, S. and COOPER, K. 2018. Improving kNN for human activity recognition with privileged learning using translation models. In Cox, M.T., Funk, P. and Begum, S. (eds.) Case-based reasoning research and development: proceedings of the 26th International conference on case-based reasoning (ICCBR 2018), 9-12 July 2018, Stockholm, Sweden. Lecture notes in computer science, 11156. Cham: Springer [online], pages 448-463. Available from: https://doi.org/10.1007/978-3-030-01081-2_30

Multiple sensor modalities provide more accurate Human Activity Recognition (HAR) compared to using a single modality, yet the latter is preferred by consumers as it is more convenient and less intrusive. This presents a challenge to researchers, as... Read More about Improving kNN for human activity recognition with privileged learning using translation models..

Personalised human activity recognition using matching networks. (2018)
Presentation / Conference Contribution
SANI, S., WIRATUNGA, N., MASSIE, S. and COOPER, K. 2018. Personalised human activity recognition using matching networks. In Cox, M.T., Funk, P. and Begum, S. (eds.) Case-based reasoning research and development: proceedings of the 26th International conference on case-based reasoning (ICCBR 2018), 9-12 July 2018, Stockholm, Sweden. Lecture notes in computer science, 11156. Cham: Springer [online], pages 339-353. Available from: https://doi.org/10.1007/978-3-030-01081-2_23

Human Activity Recognition (HAR) is typically modelled as a classification task where sensor data associated with activity labels are used to train a classifier to recognise future occurrences of these activities. An important consideration when trai... Read More about Personalised human activity recognition using matching networks..

Matching networks for personalised human activity recognition. (2018)
Presentation / Conference Contribution
SANI, S., WIRATUNGA, N., MASSIE, S. and COOPER, K. 2018. Matching networks for personalised human activity recognition. In Bichindaritz, I., Guttmann, C., Herrero, P., Koch, F., Koster, A., Lenz, R., López Ibáñez, B., Marling, C., Martin, C., Montagna, S., Montani, S., Reichert, M., Riaño, D., Schumacher, M.I., ten Teije, A. and Wiratunga, N. (eds.) Proceedings of the 1st Joint workshop on artificial intelligence in health, organized as part of the Federated AI meeting (FAIM 2018), co-located with the 17th International conference on autonomous agents and multiagent systems (AAMAS 2018), the 35th International conference on machine learning (ICML 2018), the 27th International joint conference on artificial intelligence (IJCAI 2018), and the 26th International conference on case-based reasoning (ICCBR 2018), 13-19 July 2018, Stockholm, Sweden. CEUR workshop proceedings, 2142. Aachen: CEUR-WS [online], pages 61-64. Available from: http://ceur-ws.org/Vol-2142/short4.pdf

Human Activity Recognition (HAR) has many important applications in health care which include management of chronic conditions and patient rehabilitation. An important consideration when training HAR models is whether to use training data from a gene... Read More about Matching networks for personalised human activity recognition..

Improving human activity recognition with neural translator models. (2018)
Presentation / Conference Contribution
WIJEKOON, A., WIRATUNGA, N. and SANI, S. 2018. Improving human activity recognition with neural translator models. In Minor, M. (ed.) Workshop proceedings for the 26th International conference on case-based reasoning (ICCBR 2018), 9-12 July 2018, Stockholm, Sweden. Stockholm: ICCBR [online], pages 96-100. Available from: http://iccbr18.com/wp-content/uploads/ICCBR-2018-V3.pdf#page=96

Multiple sensor modalities provide more accurate Human Activity Recognition (HAR) compared to using a single modality, yet the latter is more convenient and less intrusive. It is advantages to create a model which learns from all available sensors; a... Read More about Improving human activity recognition with neural translator models..

Explainability through transparency and user control: a case-based recommender for engineering workers. (2018)
Presentation / Conference Contribution
MARTIN, K., LIRET, A., WIRATUNGA, N., OWUSU, G. and KERN, M. 2018. Explainability through transparency and user control: a case-based recommender for engineering workers. In Minor, M. (ed.) Workshop proceedings for the 26th International conference on case-based reasoning (ICCBR 2018), 9-12 July 2018, Stockholm, Sweden. Stockholm: ICCBR [online], pages 22-31. Available from: http://iccbr18.com/wp-content/uploads/ICCBR-2018-V3.pdf#page=22

Within the service providing industries, field engineers can struggle to access tasks which are suited to their individual skills and experience. There is potential for a recommender system to improve access to information while being on site. Howeve... Read More about Explainability through transparency and user control: a case-based recommender for engineering workers..

Study of similarity metrics for matching network-based personalised human activity recognition. (2018)
Presentation / Conference Contribution
SANI, S., WIRATUNGA, N., MASSIE, S. and COOPER, K. 2018. Study of similarity metrics for matching network-based personalised human activity recognition. In Minor, M. (ed.) Workshop proceedings for the 26th International conference on case-based reasoning (ICCBR 2018), 9-12 July 2018, Stockholm, Sweden, pages 91-95. Available from: http://iccbr18.com/wp-content/uploads/ICCBR-2018-V3.pdf#page=91

Personalised Human Activity Recognition (HAR) models trained using data from the target user (subject-dependent) have been shown to be superior to non personalised models that are trained on data from a general population (subject-independent). Howev... Read More about Study of similarity metrics for matching network-based personalised human activity recognition..

Zero-shot learning with matching networks for open-ended human activity recognition. (2018)
Presentation / Conference Contribution
WIJEKOON, A., WIRATUNGA, N. and SANI, S. 2018. Zero-shot learning with matching networks for open-ended human activity recognition. In Martin, K., Wiratunga, N. and Smith, L.S. (eds.) Proceedings of the 2018 Scottish Informatics and Computer Science Alliance (SCISA) workshop on reasoning, learning and explainability (ReaLX 2018), 27 June 2018, Aberdeen, UK. CEUR workshop proceedings, 2151. Aachen: CEUR-WS [online], session 2, paper 4. Available from: http://ceur-ws.org/Vol-2151/Paper_S9.pdf

A real-world solution for Human Activity Recognition (HAR) should cover a variety of activities. However training a model to cover each and every possible activity is not practical. Instead we need a solution that can adapt its learning to unseen act... Read More about Zero-shot learning with matching networks for open-ended human activity recognition..

Digital interpretation of sensor-equipment diagrams. (2018)
Presentation / Conference Contribution
MORENO-GARCÍA, C.F. 2018. Digital interpretation of sensor-equipment diagrams. In Martin, K., Wiratunga, N. and Smith, L.S. (eds.) Proceedings of the 2018 Scottish Informatics and Computer Science Alliance (SCISA) workshop on reasoning, learning and explainability (ReaLX 2018), 27 June 2018, Aberdeen, UK. CEUR workshop proceedings, 2151. Aachen: CEUR-WS [online], session 2, paper 1. Available from: http://ceur-ws.org/Vol-2151/Paper_s2.pdf

A sensor-equipment diagram is a type of engineering drawing used in the industrial practice that depicts the interconnectivity between a group of sensors and a portion of an Oil & Gas facility. The interpretation of these documents is not a straightf... Read More about Digital interpretation of sensor-equipment diagrams..