Skip to main content

Research Repository

Advanced Search

Professor Nirmalie Wiratunga


DisCERN: discovering counterfactual explanations using relevance features from neighbourhoods. (2021)
Conference Proceeding
WIRATUNGA, N., WIJEKOON, A., NKISI-ORJI, I., MARTIN, K., PALIHAWADANA, C. and CORSAR, D. 2021. DisCERN: discovering counterfactual explanations using relevance features from neighbourhoods. In Proceedings of 33rd IEEE (Institute of Electrical and Electronics Engineers) International conference on tools with artificial intelligence 2021 (ICTAI 2021), 1-3 November 2021, Washington, USA [virtual conference]. Piscataway: IEEE [online], pages 1466-1473. Available from: https://doi.org/10.1109/ICTAI52525.2021.00233

Counterfactual explanations focus on 'actionable knowledge' to help end-users understand how a machine learning outcome could be changed to a more desirable outcome. For this purpose a counterfactual explainer needs to discover input dependencies tha... Read More about DisCERN: discovering counterfactual explanations using relevance features from neighbourhoods..

FedSim: similarity guided model aggregation for federated learning. (2021)
Journal Article
PALIHAWADANA, C., WIRATUNGA, N., WIJEKOON, A. and KALUTARAGE, H. 2022. FedSim: similarity guided model aggregation for federated learning. Neurocomputing [online], 483: distributed machine learning, optimization and applications, pages 432-445. Available from: https://doi.org/10.1016/j.neucom.2021.08.141

Federated Learning (FL) is a distributed machine learning approach in which clients contribute to learning a global model in a privacy preserved manner. Effective aggregation of client models is essential to create a generalised global model. To what... Read More about FedSim: similarity guided model aggregation for federated learning..

Effectiveness of app-delivered, tailored self-management support for adults with lower back pain-related disability: a selfBACK randomized clinical trial. [Dataset] (2021)
Dataset
SANDAL, L.F., BACH, K., ØVERÅS, C.K., WIRATUNGA, N., COOPER, K, et al. 2021. Effectiveness of app-delivered, tailored self-management support for adults with lower back pain-related disability: a selfBACK randomized clinical trial. [Dataset]. JAMA internal medicine [online], 181(10), pages 1288-1296. Available from: https://jamanetwork.com/journals/jamainternalmedicine/fullarticle/2782459#supplemental-tab

SELFBACK is an evidence-based decision support system that supports self-management of nonspecific low back pain. In specific, SELFBACK provides the user with evidence-based advice on physical activity level, strength/ flexibility exercises, and educ... Read More about Effectiveness of app-delivered, tailored self-management support for adults with lower back pain-related disability: a selfBACK randomized clinical trial. [Dataset].

Clood CBR: towards microservices oriented case-based reasoning. (2020)
Conference Proceeding
NKISI-ORJI, I., WIRATUNGA, N., PALIHAWADANA, C., RECIO-GARCIA, J.A. and CORSAR, D. 2020. Clood CBR: towards microservices oriented case-based reasoning. In Watson, I and Weber, R. (eds.) Case-based reasoning research and development: proceedings of the 28th International conference on case-based reasoning research and development (ICCBR 2020), 8-12 June 2020, Salamanca, Spain [virtual conference]. Lecture notes in computer science, 12311. Cham: Springer [online], pages 129-143. Available from: https://doi.org/10.1007/978-3-030-58342-2_9

CBR applications have been deployed in a wide range of sectors, from pharmaceuticals; to defence and aerospace to IoT and transportation, to poetry and music generation; for example. However, a majority of these have been built using monolithic archi... Read More about Clood CBR: towards microservices oriented case-based reasoning..

Personalised meta-learning for human activity recognition with few-data. (2020)
Conference Proceeding
WIJEKOON, A. and WIRATUNGA, N. 2020. Personalised meta-learning for human activity recognition with few-data. In Bramer, M. and Ellis, R. (eds.) Artificial intelligence XXXVII: proceedings of 40th British Computer Society's Specialist Group on Artificial Intelligence (SGAI) Artificial intelligence international conference 2020 (AI-2020), 15-17 December 2020, [virtual conference]. Lecture notes in artificial intelligence, 12498. Cham: Springer [online], pages 79-93. Available from: https://doi.org/10.1007/978-3-030-63799-6_6

State-of-the-art methods of Human Activity Recognition(HAR) rely on a considerable amount of labelled data to train deep architectures. This becomes prohibitive when tasked with creating models that are sensitive to personal nuances in human movement... Read More about Personalised meta-learning for human activity recognition with few-data..

Clinical dialogue transcription error correction using Seq2Seq models. (2022)
Conference Proceeding
NANAYAKKARA, G., WIRATURNGA, N., CORSAR, D., MARTIN, K. and WIJEKOON, A. 2022. Clinical dialogue transcription error correction using Seq2Seq models. In Shaban-Nejad, A., Michalowski, M. and Bianco, S. (eds.) Multimodal AI in healthcare: a paradigm shift in health intelligence; selected papers from the 6th International workshop on health intelligence (W3PHIAI-22), co-located with the 34th AAAI (Association for the Advancement of Artificial Intelligence) Innovative applications of artificial intelligence (IAAI-22), 28 February - 1 March 2022, [virtual event]. Studies in computational intelligence, 1060. Cham: Springer [online], pages 41-57. Available from: https://doi.org/10.1007/978-3-031-14771-5_4

Good communication is critical to good healthcare. Clinical dialogue is a conversation between health practitioners and their patients, with the explicit goal of obtaining and sharing medical information. This information contributes to medical decis... Read More about Clinical dialogue transcription error correction using Seq2Seq models..

A case-based approach for content planning in data-to-text generation. (2022)
Conference Proceeding
UPADHYAY, A. and MASSIE, S. 2022. A case-based approach for content planning in data-to-text generation. In Keane, M.T. and Wiratunga, N. (eds.) Case-based reasoning research and development: proceedings of the 30th International conference on case-based reasoning (ICCBR 2022), 12-15 September 2022, Nancy, France. Lecture notes in computer science, 13405. Cham: Springer [online], pages 380-394. Available from: https://doi.org/10.1007/978-3-031-14923-8_25

The problem of Data-to-Text Generation (D2T) is usually solved using a modular approach by breaking the generation process into some variant of planning and realisation phases. Traditional methods have been very good at producing high quality texts b... Read More about A case-based approach for content planning in data-to-text generation..

How close is too close? Role of feature attributions in discovering counterfactual explanations. (2022)
Conference Proceeding
WIJEKOON, A., WIRATUNGA, N., NKISI-ORJI, I., PALIHAWADANA, C., CORSAR, D. and MARTIN, K. 2022. How close is too close? Role of feature attributions in discovering counterfactual explanations. In Keane, M.T. and Wiratunga, N. (eds.) Case-based reasoning research and development: proceedings of the 30th International conference on case-based reasoning (ICCBR 2022), 12-15 September 2022, Nancy, France. Lecture notes in computer science, 13405. Cham: Springer [online], pages 33-47. Available from: https://doi.org/10.1007/978-3-031-14923-8_3

Counterfactual explanations describe how an outcome can be changed to a more desirable one. In XAI, counterfactuals are "actionable" explanations that help users to understand how model decisions can be changed by adapting features of an input. A cas... Read More about How close is too close? Role of feature attributions in discovering counterfactual explanations..

Adapting semantic similarity methods for case-based reasoning in the Cloud. (2022)
Conference Proceeding
NKISI-ORJI, I., PALIHAWADANA, C., WIRATUNGA, N., CORSAR, D. and WIJEKOON, A. 2022. Adapting semantic similarity methods for case-based reasoning in the Cloud. In Keane, M.T. and Wiratunga, N. (eds.) Case-based reasoning research and development: proceedings of the 30th International conference on case-based reasoning (ICCBR 2022), 12-15 September 2022, Nancy, France. Lecture notes in computer science, 13405. Cham: Springer [online], pages 125-139. Available from: https://doi.org/10.1007/978-3-031-14923-8_9

CLOOD is a cloud-based CBR framework based on a microservices architecture, which facilitates the design and deployment of case-based reasoning applications of various sizes. This paper presents advances to the similarity module of CLOOD through the... Read More about Adapting semantic similarity methods for case-based reasoning in the Cloud..

MIRATAR: a virtual caregiver for active and healthy ageing. (2022)
Conference Proceeding
SANTOFIMIA, M.J., VILLANUEVA, F.J., DORADO, J., RUBIO, A., FERNÁNDEZ-BERMEJO, J., LLUMIGUANO, H., DEL TORO, X., WIRATUNGA, N. and LOPEZ, J.C. 2022. MIRATAR: a virtual caregiver for active and healthy ageing. In Mazzeo, P.L., Frontoni, E., Sclaroff, S. and Distante, C. (eds.) Image analysis and processing: ICIAP 2022 workshops; revised selected papers from the proceedings of the 21st International conference on image analysis and processing (ICIAP 2022) international workshops, 23-27 May 2022, Lecce, Italy, part I. Lecture notes in computer science, 13373. Cham: Springer [online], pages 49-58. Available from: https://doi.org/10.1007/978-3-031-13321-3_5

Despite the technology advances in the field of virtual assistant and activity monitoring devices, older adults are still reluctant to embrace this technology, specially when it comes to employ it to manage health-related issues. This paper presents... Read More about MIRATAR: a virtual caregiver for active and healthy ageing..