Skip to main content

Research Repository

See what's under the surface

Advanced Search

Professor Nirmalie Wiratunga


Evaluating the transferability of personalised exercise recognition models. (2020)
Conference Proceeding
WIJEKOON, A. and WIRATUNGA, N. [2020]. Evaluating the transferability of personalised exercise recognition models. In Proceedings of the International Neural Network Society (EANN 2020), 5-7 June 2020, Halkidiki, Greece. Cham: Springer [online], (accepted).

Exercise Recognition (ExR) is relevant in many high impact domains, from health care to recreational activities to sports sciences. Like Human Activity Recognition (HAR), ExR faces many challenges when deployed in the real-world. For instance, typica... Read More about Evaluating the transferability of personalised exercise recognition models..

Heterogeneous multi-modal sensor fusion with hybrid attention for exercise recognition. (2020)
Conference Proceeding
WIJEKOON, A., WIRATUNGA, N. and COOPER, K. [2020]. Heterogeneous multi-modal sensor fusion with hybrid attention for exercise recognition. To be presented at the 2020 Institute of Electrical and Electronics Engineers (IEEE) World computational intelligence congress (WCCI 2020), co-located with 2020 International Joint Conference on Neural Networks (IJCNN 2020), 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2020), and IEEE Congress on Evolutionary Computation (IEEE CEC 2020), 19-24 July 2020, Glasgow, UK.

Exercise adherence is a key component of digital behaviour change interventions for the self-management of musculoskeletal pain. Automated monitoring of exercise adherence requires sensors that can capture patients performing exercises and Machine Le... Read More about Heterogeneous multi-modal sensor fusion with hybrid attention for exercise recognition..

Locality sensitive batch selection for triplet networks. (2020)
Conference Proceeding
MARTIN, K., WIRATUNGA, N. and SANI, S. [2020]. Locality sensitive batch selection for triplet networks. To be presented at the 2020 Institute of Electrical and Electronics Engineers (IEEE) World computational intelligence congress (WCCI 2020), co-located with 2020 International Joint Conference on Neural Networks (IJCNN 2020), 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2020), and IEEE Congress on Evolutionary Computation (IEEE CEC 2020), 19-24 July 2020, Glasgow, UK.

Triplet networks are deep metric learners which learn to optimise a feature space using similarity knowledge gained from training on triplets of data simultaneously. The architecture relies on the triplet loss function to optimise its weights based u... Read More about Locality sensitive batch selection for triplet networks..

A knowledge-light approach to personalised and open-ended human activity recognition. (2020)
Journal Article
WIJEKOON, A., WIRATUNGA, N., SANI, S. and COOPER, K. 2020. A knowledge-light approach to personalised and open-ended human activity recognition. Knowledge-based systems [online], 192, article ID 105651. Available from: https://doi.org/10.1016/j.knosys.2020.105651

Human Activity Recognition (HAR) is a core component of clinical decision support systems that rely on activity monitoring for self-management of chronic conditions such as Musculoskeletal Disorders. Deployment success of such applications in part de... Read More about A knowledge-light approach to personalised and open-ended human activity recognition..

Learning to recognise exercises for the self management of low back pain. (2020)
Conference Proceeding
WIJEKOON, A., WIRATUNGA, N., COOPER, K. and BACH, K. [2020]. Learning to recognise exercises for the self management of low back pain. In Proceedings of the 33rd International Florida Artificial Intelligence Research Society (FLAIRS) 2020 conference (FLAIRS 2020), 17-20 May 2020, Miami Beach, USA. Palo Alto: AAAI Press, (accepted).

Globally, Low back pain (LBP) is one of the top three contributors to years lived with disability. Self-management with an active lifestyle is the cornerstone for preventing and managing LBP. Digital interventions are introduced in the recent past to... Read More about Learning to recognise exercises for the self management of low back pain..

Human activity recognition with deep metric learners. (2020)
Conference Proceeding
MARTIN, K., WIJEKOON, A. and WIRATUNGA, N. 2019. Human activity recognition with deep metric learners. In Kapetanakis, S. and Borck, H. (eds.) Proceedings of 27th International conference on case-based reasoning workshop (ICCBR-WS19), co-located with the 27th International conference on case-based reasoning (ICCBR19), 8-12 September 2019, Otzenhausen, Germany. CEUR Workshop Proceedings, 2567. Aachen: CEUR-WS [online], pages 8-17. Available from: http://ceur-ws.org/Vol-2567/paper1.pdf

Establishing a strong foundation for similarity-based return is a top priority in Case-Based Reasoning (CBR) systems. Deep Metric Learners (DMLs) are a group of neural network architectures which learn to optimise case representations for similarity-... Read More about Human activity recognition with deep metric learners..

Integrating selection-based aspect sentiment and preference knowledge for social recommender systems. (2019)
Journal Article
CHEN, Y.Y., WIRATUNGA, N. and LOTHIAN, R. 2019. Integrating selection-based aspect sentiment and preference knowledge for social recommender systems. Online information review [online], EarlyCite. Available from: https://doi.org/10.1108/OIR-02-2017-0066

Purpose - Recommender system approaches such as collaborative and content-based filtering rely on user ratings and product descriptions to recommend products. More recently, recommender system research has focused on exploiting knowledge from user-ge... Read More about Integrating selection-based aspect sentiment and preference knowledge for social recommender systems..

Developing a catalogue of explainability methods to support expert and non-expert users. (2019)
Conference Proceeding
MARTIN, K., LIRET, A., WIRATUNGA, N., OWUSU, G. and KERN, M. 2019. Developing a catalogue of explainability methods to support expert and non-expert users. In Bramer, M. and Petridis, M. (eds.) Artificial intelligence XXXVI: proceedings of the 39th British Computer Society's Specialist Group on Artificial Intelligence (SGAI) International conference on artificial intelligence (AI 2019), 17-19 December 2019, Cambridge, UK. Lecture notes in computer science, 11927. Cham: Springer [online], pages 309-324. Available from: https://doi.org/10.1007/978-3-030-34885-4_24

Organisations face growing legal requirements and ethical responsibilities to ensure that decisions made by their intelligent systems are explainable. However, provisioning of an explanation is often application dependent, causing an extended design... Read More about Developing a catalogue of explainability methods to support expert and non-expert users..

Learning to self-manage by intelligent monitoring, prediction and intervention. (2019)
Conference Proceeding
WIRATUNGA, N., CORSAR, D., MARTIN, K., WIJEKOON, A., ELYAN, E., COOPER, K., IBRAHIM, Z., CELIKTUTAN, O., DOBSON, R.J., MCKENNA, S., MORRIS, J., WALLER, A., ABD-ALHAMMED, R., QAHWAJI, R. and CHAUDHURI, R. 2019. Learning to self-manage by intelligent monitoring, prediction and intervention. In Wiratunga, N., Coenen, F. and Sani, S. (eds.) Proceedings of the 4th International workshop on knowledge discovery in healthcare data (KDH 2019), co-located with the 28th International joint conference on artificial intelligence (IJCAI-19), 10-11 August 2019, Macao, China. CEUR workshop proceedings, 2429. Aachen: CEUR Workshop Proceedings [online], pages 60-67. Available from: http://ceur-ws.org/Vol-2429/paper10.pdf

Despite the growing prevalence of multimorbidities, current digital self-management approaches still prioritise single conditions. The future of out-of-hospital care requires researchers to expand their horizons; integrated assistive technologies sho... Read More about Learning to self-manage by intelligent monitoring, prediction and intervention..

Representation and learning schemes for argument stance mining. (2019)
Thesis
CLOS, J. 2019. Representation and learning schemes for argument stance mining. Robert Gordon University [online], PhD thesis. Available from: https://openair.rgu.ac.uk

Argumentation is a key part of human interaction. Used introspectively, it searches for the truth, by laying down argument for and against positions. As a mediation tool, it can be used to search for compromise between multiple human agents. For this... Read More about Representation and learning schemes for argument stance mining..

;