Skip to main content

Research Repository

Advanced Search

Professor Nirmalie Wiratunga


Assessing the clinicians’ pathway to embed artificial intelligence for assisted diagnostics of fracture detection. (2020)
Conference Proceeding
MORENO-GARCÍA, C.F., DANG, T., MARTIN, K., PATEL, M., THOMPSON, A., LEISHMAN, L. and WIRATUNGA, N. 2020. Assessing the clinicians’ pathway to embed artificial intelligence for assisted diagnostics of fracture detection. In Bach, K., Bunescu, R., Marling, C. and Wiratunga, N. (eds.) Knowledge discovery in healthcare data 2020: proceedings of the 5th Knowledge discovery in healthcare data international workshop 2020 (KDH 2020), co-located with 24th European Artificial intelligence conference (ECAI 2020), 29-30 August 2020, [virtual conference]. CEUR workshop proceedings, 2675. Aachen: CEUR-WS [online], pages 63-70. Available from: http://ceur-ws.org/Vol-2675/paper10.pdf

Fracture detection has been a long-standingparadigm on the medical imaging community. Many algo-rithms and systems have been presented to accurately detectand classify images in terms of the presence and absence offractures in different parts of the... Read More about Assessing the clinicians’ pathway to embed artificial intelligence for assisted diagnostics of fracture detection..

Usability and acceptability of an app (SELFBACK) to support self-management of low back pain: a mixed methods study. (2020)
Journal Article
NORDSTOGA, A.L., BACH, K., SANI, S., WIRATUNGA, N., MORK, P.J., VILLUMSEN, M. and COOPER, K. 2020. Usability and acceptability of an app (SELFBACK) to support self-management of low back pain: a mixed methods study. JMIR Rehabilitation and assistive technologies [online], 7(2), article number e18729. Available from: https://doi.org/10.2196/18729

Self-management is the key recommendation for managing non-specific low back pain (LBP). However, there are well-documented barriers to self-management, therefore methods of facilitating adherence are required. Smartphone apps are increasingly being... Read More about Usability and acceptability of an app (SELFBACK) to support self-management of low back pain: a mixed methods study..

Personalised meta-learning for human activity recognition with few-data. (2020)
Conference Proceeding
WIJEKOON, A. and WIRATUNGA, N. [2020]. Personalised meta-learning for human activity recognition with few-data. To be presented at 40th British Computer Society's Specialist Group on Artificial Intelligence (SGAI) Artificial intelligence international conference 2020 (AI-2020), 8-9 December 2020, [virtual conference]. Lecture notes in artificial intelligence. Cham: Springer, (accepted).

State-of-the-art methods of Human Activity Recognition (HAR) rely on having access to a considerable amount of labelled data to train deep architectures with many train-able parameters. This becomes prohibitive when tasked with creating models that... Read More about Personalised meta-learning for human activity recognition with few-data..

Evaluating the transferability of personalised exercise recognition models. (2020)
Conference Proceeding
WIJEKOON, A. and WIRATUNGA, N. 2020. Evaluating the transferability of personalised exercise recognition models. In Iliadis, L., Angelov, P.P., Jayne, C. and Pimenidis, E. (eds.) Proceedings of the 21st Engineering applications of neural networks conference 2020 (EANN 2020): proceedings of the EANN 2020, 5-7 June 2020, Halkidiki, Greece. Proceedings of the International Neural Networks Society, 2. Cham: Springer [online], pages 32-44. Available from: https://doi.org/10.1007/978-3-030-48791-1_3

Exercise Recognition (ExR) is relevant in many high impact domains, from health care to recreational activities to sports sciences. Like Human Activity Recognition (HAR), ExR faces many challenges when deployed in the real-world. For instance, typica... Read More about Evaluating the transferability of personalised exercise recognition models..

Learning to recognise exercises for the self-management of low back pain. (2020)
Conference Proceeding
WIJEKOON, A., WIRATUNGA, N., COOPER, K. and BACH, K. 2020. Learning to recognise exercises for the self-management of low back pain. In Barták, R. and Bell, E. (eds.). Proceedings of the 33rd International Florida Artificial Intelligence Research Society (FLAIRS) 2020 conference (FLAIRS-33), 17-20 May 2020, Miami Beach, USA. Palo Alto: AAAI Press [online], pages 347-352. Available from: https://aaai.org/ocs/in...AIRS20/paper/view/18460

Globally, Low back pain (LBP) is one of the top three contributors to years lived with disability. Self-management with an active lifestyle is the cornerstone for preventing and managing LBP. Digital interventions are introduced in the recent past to... Read More about Learning to recognise exercises for the self-management of low back pain..

Clood CBR: towards microservices oriented case-based reasoning. (2020)
Conference Proceeding
NKISI-ORJI, I., WIRATUNGA, N., PALIHAWADANA, C., RECIO-GARCIA, J.A. and CORSAR, D. 2020. Clood CBR: towards microservices oriented case-based reasoning. In Watson, I and Weber, R. (eds.) Case-based reasoning research and development: proceedings of the 28th International conference on case-based reasoning research and development (ICCBR 2020), 8-12 June 2020, Salamanca, Spain [virtual conference]. Lecture notes in computer science, 12311. Cham: Springer [online], (accepted). Available from: https://doi.org/10.1007/978-3-030-58342-2

CBR applications have been deployed in a wide range of sectors, for example from pharmaceuticals to defence and aerospace, and from the Internet of Things and transportation, to poetry and music generation. However, a majority of these have been buil... Read More about Clood CBR: towards microservices oriented case-based reasoning..

Learning to compare with few data for personalised human activity recognition. (2020)
Conference Proceeding
WIRATUNGA, N., WIJEKOON, A. and COOPER, K. 2020. Learning to compare with few data for personalised human activity recognition. In Watson, I and Weber, R. (eds.) Case-based reasoning research and development: proceedings of the 28th International conference on case-based reasoning research and development (ICCBR 2020), 8-12 June 2020, Salamanca, Spain [virtual conference]. Lecture notes in computer science, 12311. Cham: Springer [online], (accepted). Available from: https://doi.org/10.1007/978-3-030-58342-2

Recent advances in meta-learning provides interesting opportunities for CBR research, in similarity learning, case comparison and personalised recommendations. Rather than learning a single model for a specific task, meta-learners adopt a generalist... Read More about Learning to compare with few data for personalised human activity recognition..

Heterogeneous multi-modal sensor fusion with hybrid attention for exercise recognition. (2020)
Conference Proceeding
WIJEKOON, A., WIRATUNGA, N. and COOPER, K. [2020]. Heterogeneous multi-modal sensor fusion with hybrid attention for exercise recognition. To be presented at the 2020 Institute of Electrical and Electronics Engineers (IEEE) World computational intelligence congress (WCCI 2020), co-located with 2020 International Joint Conference on Neural Networks (IJCNN 2020), 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2020), and IEEE Congress on Evolutionary Computation (IEEE CEC 2020), 19-24 July 2020, Glasgow, UK.

Exercise adherence is a key component of digital behaviour change interventions for the self-management of musculoskeletal pain. Automated monitoring of exercise adherence requires sensors that can capture patients performing exercises and Machine Le... Read More about Heterogeneous multi-modal sensor fusion with hybrid attention for exercise recognition..

Locality sensitive batch selection for triplet networks. (2020)
Conference Proceeding
MARTIN, K., WIRATUNGA, N. and SANI, S. [2020]. Locality sensitive batch selection for triplet networks. To be presented at the 2020 Institute of Electrical and Electronics Engineers (IEEE) World computational intelligence congress (WCCI 2020), co-located with 2020 International Joint Conference on Neural Networks (IJCNN 2020), 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2020), and IEEE Congress on Evolutionary Computation (IEEE CEC 2020), 19-24 July 2020, Glasgow, UK.

Triplet networks are deep metric learners which learn to optimise a feature space using similarity knowledge gained from training on triplets of data simultaneously. The architecture relies on the triplet loss function to optimise its weights based u... Read More about Locality sensitive batch selection for triplet networks..

A knowledge-light approach to personalised and open-ended human activity recognition. (2020)
Journal Article
WIJEKOON, A., WIRATUNGA, N., SANI, S. and COOPER, K. 2020. A knowledge-light approach to personalised and open-ended human activity recognition. Knowledge-based systems [online], 192, article ID 105651. Available from: https://doi.org/10.1016/j.knosys.2020.105651

Human Activity Recognition (HAR) is a core component of clinical decision support systems that rely on activity monitoring for self-management of chronic conditions such as Musculoskeletal Disorders. Deployment success of such applications in part de... Read More about A knowledge-light approach to personalised and open-ended human activity recognition..

;