Skip to main content

Research Repository

Advanced Search

Professor Linda Lawton


Recoverable resources from pot ale and spent wash from Scotch whisky production. (2021)
Journal Article
EDWARDS, C., MCNERNEY, C.C., LAWTON, L.A., PALMER, J., MACGREGOR, K., JACK, F., COCKBURN, P., PLUMMER, A., LOVEGROVE, A. and WOOD, A. 2022. Recoverable resources from pot ale and spent wash from Scotch whisky production. Resources, conservation and recycling [online], 179, article number 106114. Available from: https://doi.org/10.1016/j.resconrec.2021.106114

Scotch Whisky is an important global commodity which generates extensive co-product known as pot ale or spent wash (> 10 L co-product per L whisky). Whilst this is often used as fertiliser or animal feed, a proportion requires disposal resulting in c... Read More about Recoverable resources from pot ale and spent wash from Scotch whisky production..

Adsorption of a diverse range of pharmaceuticals to polyethylene microplastics in wastewater and their desorption in environmental matrices. (2021)
Journal Article
MCDOUGALL, L., THOMSON, L., BRAND, S., WAGSTAFF, A., LAWTON, L.A. and PETRIE, B. 2021. Adsorption of a diverse range of pharmaceuticals to polyethylene microplastics in wastewater and their desorption in environmental matrices. Science of the total environment [online], 808, article 152071. Available from: https://doi.org/10.1016/j.scitotenv.2021.152071

It is proposed that microplastics discharged from wastewater treatment plants act as a vector of pharmaceuticals. In this study, adsorption of pharmaceuticals to polyethylene microplastics was investigated in municipal wastewater. Pharmaceuticals for... Read More about Adsorption of a diverse range of pharmaceuticals to polyethylene microplastics in wastewater and their desorption in environmental matrices..

Potentially poisonous plastic particles: microplastics as a vector for cyanobacterial toxins microcystin-LR and microcystin-LF. (2021)
Journal Article
PESTANA, C.J., MOURA, D.S., CAPELO-NETO, J., EDWARDS, C., DREISBACH, D., SPENGLER, B. and LAWTON, L.A. 2021. Potentially poisonous plastic particles: microplastics as a vector for cyanobacterial toxins microcystin-LR and microcystin-LF. Environmental science and technology [online], 55(23), pages 15940-15949. Available from: https://doi.org/10.1021/acs.est.1c05796

The potential of microplastics to act as a vector for micropollutants of natural or anthropogenic origin is of rising concern. Cyanobacterial toxins, including microcystins, are harmful to humans and wildlife. In this study, we demonstrate for the fi... Read More about Potentially poisonous plastic particles: microplastics as a vector for cyanobacterial toxins microcystin-LR and microcystin-LF..

Radiolytic degradation of 2-methylisoborneol and geosmin in water: reactive radical species and transformation pathways. (2021)
Journal Article
CHRISTOPHORIDIS, C., PESTANA, C.J., KALOUDIS, T., LAWTON, L.A., TRIANTIS, T.M. and HISKIA, A. 2021. Radiolytic degradation of 2-methylisoborneol and geosmin in water: reactive radical species and transformation pathways. Chemical engineering journal advances [online], 15, article 100196. Available from: https://doi.org/10.1016/j.ceja.2021.100196

Water radiolysis can serve as a useful tool to study the degradation of organic pollutants in water. Manipulation of the radiolytic system enables the selective production of reactive species (RS) with known yields. Our aim was to explore the effects... Read More about Radiolytic degradation of 2-methylisoborneol and geosmin in water: reactive radical species and transformation pathways..

Polyamide microplastics in wastewater as vectors of cationic pharmaceutical drugs. (2021)
Journal Article
WAGSTAFF, A., LAWTON, L.A. and PETRIE, B. 2021. Polyamide microplastics in wastewater as vectors of cationic pharmaceutical drugs. Chemosphere [online], In Press. Available from: https://doi.org/10.1016/j.chemosphere.2021.132578

Reported here is the first study to investigate the adsorption of pharmaceutical drugs to microplastics in wastewater. Wastewater is an environmental source of microplastics and pharmaceuticals, which is discharged as treated effluent or combined sew... Read More about Polyamide microplastics in wastewater as vectors of cationic pharmaceutical drugs..

Polyamide microplastics in wastewater as vectors of cationic pharmaceutical drugs. [Dataset] (2021)
Dataset
WAGSTAFF, A., LAWTON, L.A. and PETRIE, B. 2021. Polyamide microplastics in wastewater as vectors of cationic pharmaceutical drugs. [Dataset]. Chemosphere [online], In Press. Available from: https://www.sciencedirect.com/science/article/pii/S0045653521030502?via%3Dihub#appsec1

Wastewater is an environmental source of microplastics and pharmaceuticals, which is discharged as treated effluent or combined sewer overflows. In this study, adsorption of cationic pharmaceuticals, with a range of octanol-water distribution coeffic... Read More about Polyamide microplastics in wastewater as vectors of cationic pharmaceutical drugs. [Dataset].

Comparison of UV-A photolytic and UV/TiO2 photocatalytic effects on Microcystis aeruginosa PCC7813 and four microcystin analogues: a pilot scale study. [Dataset] (2021)
Dataset
MENEZES, I., CAPELO-NETO, J., PESTANA, C.J., CLEMENTE, A., HUI, J., IRVINE, J.T.S., GUNARATNE, H.Q.N., ROBERTSON, P.K.J., EDWARDS, C., GILLANDERS, R.N., TURNBULL, G.A. and LAWTON, L.A. 2021. Comparison of UV-A photolytic and UV/TiO2 photocatalytic effects on Microcystis aeruginosa PCC7813 and four microcystin analogues: a pilot scale study. [Dataset]. Journal of environmental management [online], 298, article 113519. Available from: https://www.sciencedirect.com/science/article/pii/S0301479721015814#appsec1

Cyanobacterial blooms in freshwater reservoirs represent a threat to human and animal health because of the potential release of a wide variety of harmful metabolites, known collectively as cyanotoxins. Microcystins (MCs) are one of the most commonly... Read More about Comparison of UV-A photolytic and UV/TiO2 photocatalytic effects on Microcystis aeruginosa PCC7813 and four microcystin analogues: a pilot scale study. [Dataset].

Comparison of UV-A photolytic and UV/TiO2 photocatalytic effects on Microcystis aeruginosa PCC7813 and four microcystin analogues: a pilot scale study. (2021)
Journal Article
MENEZES, I., CAPELO-NETO, J., PESTANA, C.J., CLEMENTE, A., HUI, J., IRVINE, J.T.S., GUNARATNE, H.Q.N., ROBERTSON, P.K.J., EDWARDS, C., GILLANDERS, R.N., TURNBULL, G.A. and LAWTON, L.A. 2021. Comparison of UV-A photolytic and UV/TiO2 photocatalytic effects on Microcystis aeruginosa PCC7813 and four microcystin analogues: a pilot scale study. Journal of environmental management [online], 298, article 113519. Available from: https://doi.org/10.1016/j.jenvman.2021.113519

To date, the high cost of supplying UV irradiation has prevented the widespread application of UV photolysis and titanium dioxide based photocatalysis in removing undesirable organics in the water treatment sector. To overcome this problem, the use o... Read More about Comparison of UV-A photolytic and UV/TiO2 photocatalytic effects on Microcystis aeruginosa PCC7813 and four microcystin analogues: a pilot scale study..

New directions and challenges in engineering biologically-enhanced biochar for biological water treatment. (2021)
Journal Article
JAYAKUMAR, A., WURZER, C., SOLDATOU, S., EDWARDS, C., LAWTON, L.A. and MAŠEK, O. 2021. New directions and challenges in engineering biologically-enhanced biochar for biological water treatment. Science of the total environment [online], 796, article number 148977. Available from: https://doi.org/10.1016/j.scitotenv.2021.148977

Cost-effective, efficient, and sustainable water treatment solutions utilising existing materials and technology will make it easier for low and middle-income countries to adopt them, improving public health. The ability of biochar to mediate and sup... Read More about New directions and challenges in engineering biologically-enhanced biochar for biological water treatment..

High value phycotoxins from the dinoflagellate Prorocentrum. (2021)
Journal Article
CAMACHO-MUÑOZ, D., PRAPTIWI, R.A., LAWTON, L.A. and EDWARDS, C. 2021. High value phycotoxins from the dinoflagellate Prorocentrum. Frontiers in marine science [online], 8, article number 638739. Available from: https://doi.org/10.3389/fmars.2021.638739

Marine dinoflagellates produce chemically diverse compounds, with a wide range of biological activity (antimicrobial, anticancer, treatment of neurodegenerative disease along with use as biomedical research tools). Chemical diversity is highlighted b... Read More about High value phycotoxins from the dinoflagellate Prorocentrum..