Skip to main content

Research Repository

Advanced Search

Dr Harsha Kalutarage's Outputs (31)

Memory efficient federated deep learning for intrusion detection in IoT networks. (2021)
Presentation / Conference Contribution
ZAKARIYYA, A. KALUTARAGE, H. and AL-KADRI, M.O. 2021. Memory efficient federated deep learning for intrusion detection in IoT networks. In Sani, S. and Kalutarage, H. (eds.) AI and cybersecurity 2021: proceedings of the 2021 Workshop on AI and cybersecurity (AI-Cybersec 2021), co-located with the 41st Specialist Group on Artificial Intelligence international conference on artificial intelligence (SGAI 2021), 14 December 2021, [virtual event]. CEUR workshop proceedings, 3125. Aachen: CEUR-WS [online], pages 85-99. Available from: http://ceur-ws.org/Vol-3125/paper7.pdf

Deep Neural Networks (DNNs) methods are widely proposed for cyber security monitoring. However, training DNNs requires a lot of computational resources. This restricts direct deployment of DNNs to resource-constrained environments like the Internet o... Read More about Memory efficient federated deep learning for intrusion detection in IoT networks..

Reasoning with counterfactual explanations for code vulnerability detection and correction. (2021)
Presentation / Conference Contribution
WIJEKOON, A. and WIRATUNGA, N. 2021. Reasoning with counterfactual explanations for code vulnerability detection and correction. In Sani, S. and Kalutarage, H. (eds.) AI and cybersecurity 2021: proceedings of the 2021 Workshop on AI and cybersecurity (AI-Cybersec 2021), co-located with the 41st Specialist Group on Artificial Intelligence international conference on artificial intelligence (SGAI 2021), 14 December 2021, [virtual event]. CEUR workshop proceedings, 3125. Aachen: CEUR-WS [online], pages 1-13. Available from: http://ceur-ws.org/Vol-3125/paper1.pdf

Counterfactual explanations highlight "actionable knowledge" which helps the end-users to understand how a machine learning outcome could be changed to a more desirable outcome. In code vulnerability detection, understanding these "actionable" correc... Read More about Reasoning with counterfactual explanations for code vulnerability detection and correction..

TrustMod: a trust management module for NS-3 simulator. (2021)
Presentation / Conference Contribution
HAJAR, M.S., KALUTARAGE, H. and AL-KADRI, M.O. 2021. TrustMod: a trust management module for NS-3 simulator. In Zhao, L., Kumar, N., Hsu, R.C. and Zou, D. (eds.) Proceedings of 20th IEEE (Institute of Electrical and Electronics Engineers) International conference on Trust, security and privacy in computing and communications 2021 (IEEE TrustCom 2021), 20-21 October 2021, Shenyang, China: [virtual event]. Piscataway: IEEE [online], pages 51-60. Available from: https://doi.org/10.1109/TrustCom53373.2021.00025

Trust management offers a further level of defense against internal attacks in ad hoc networks. Deploying an effective trust management scheme can reinforce the overall network security. Regardless of limitations, however, security researchers often... Read More about TrustMod: a trust management module for NS-3 simulator..

Effective detection of cyber attack in a cyber-physical power grid system. (2021)
Presentation / Conference Contribution
OTOKWALA, U., PETROVSKI, A. and KALUTARAGE, H. 2021. Effective detection of cyber attack in a cyber-physical power grid system. In Arai, K. (ed) Advances in information and communication: proceedings of Future of information and communication conference (FICC 2021), 29-30 April 2021, Vancouver, Canada. Advances in intelligent systems and computing, 1363. Cham: Springer [online], 1, pages 812-829. Available from: https://doi.org/10.1007/978-3-030-73100-7_57

Advancement in technology and the adoption of smart devices in the operation of power grid systems have made it imperative to ensure adequate protection for the cyber-physical power grid system against cyber-attacks. This is because, contemporary cyb... Read More about Effective detection of cyber attack in a cyber-physical power grid system..

LTMS: a lightweight trust management system for wireless medical sensor networks. (2021)
Presentation / Conference Contribution
HAJAR, M.S., AL-KADRI, M.O. and KALUTARAGE, H. 2020. LTMS: a lightweight trust management system for wireless medical sensor networks. In Wang, G., Ko, R., Bhuiyan, M.Z.A. and Pan, Y. (eds.). Proceedings of 19th Institute of Electrical and Electronics Engineers (IEEE) Trust, security and privacy in computing and communication international conference 2020 (TrustCom 2020), 29 Dec 2020 - 1 Jan 2021, Guangzhou, China. Piscataway: IEEE [online], pages 1783-1790. Available from: https://doi.org/10.1109/TrustCom50675.2020.00245

Wireless Medical Sensor Networks (WMSNs) offer ubiquitous health applications that enhance patients' quality of life and support national health systems. Detecting internal attacks on WMSNs is still challenging since cryptographic measures can not pr... Read More about LTMS: a lightweight trust management system for wireless medical sensor networks..

Resource efficient boosting method for IoT security monitoring. (2021)
Presentation / Conference Contribution
ZAKARIYYA, I., AL-KADRI, M.O. and KALUTARAGE, H. 2021. Resource efficient boosting method for IoT security monitoring. In Proceedings of 18th Institute of Electrical and Electronics Engineers (IEEE) Consumer communications and networking conference 2021 (CCNC 2021), 9-12 January 2021, [virtual conference]. Piscataway: IEEE [online], article 9369620. Available from: https://doi.org/10.1109/ccnc49032.2021.9369620

Machine learning (ML) methods are widely proposed for security monitoring of Internet of Things (IoT). However, these methods can be computationally expensive for resource constraint IoT devices. This paper proposes an optimized resource efficient ML... Read More about Resource efficient boosting method for IoT security monitoring..

ETAREE: an effective trend-aware reputation evaluation engine for wireless medical sensor networks. (2020)
Presentation / Conference Contribution
HAJAR, M.S., AL-KADRI, M.O. and KALUTARAGE, H. 2020. ETAREE: an effective trend-aware reputation evaluation engine for wireless medical sensor networks. In Proceedings of 2020 Institute of Electrical and Electronics Engineers (IEEE) Communications and network security conference (CNS 2020), 29 June - 1 July 2020, [virtual conference]. Piscataway: IEEE [online], article ID 9162325. Available from: https://doi.org/10.1109/CNS48642.2020.9162325

Wireless Medical Sensor Networks (WMSN) will play a significant role in the advancements of modern healthcare applications. Security concerns are still the main obstacle to the widespread adoption of this technology. Conventional security approaches,... Read More about ETAREE: an effective trend-aware reputation evaluation engine for wireless medical sensor networks..

Reducing computational cost in IoT cyber security: case study of artificial immune system algorithm. (2019)
Presentation / Conference Contribution
ZAKARIYYA, I., AL-KADRI, M.O., KALUTARGE, H. and PETROVSKI, A. 2019. Reducing computational cost in IoT cyber security: case study of artificial immune system algorithm. In Obaidat, M. and Samarati, P. (eds.) Proceedings of the 16th International security and cryptography conference (SECRYPT 2019), co-located with the 16th International joint conference on e-business and telecommunications (ICETE 2019), 26-28 July 2019, Prague, Czech Republic. Setúbal, Portugal: SciTePress [online], 2, pages 523-528. Available from: https://doi.org/10.5220/0008119205230528.

Using Machine Learning (ML) for Internet of Things (IoT) security monitoring is a challenge. This is due to their resource constraint nature that limits the deployment of resource-hungry monitoring algorithms. Therefore, the aim of this paper is to i... Read More about Reducing computational cost in IoT cyber security: case study of artificial immune system algorithm..

Context-aware anomaly detector for monitoring cyber attacks on automotive CAN bus. (2019)
Presentation / Conference Contribution
KALUTARAGE, H.K., AL-KADRI, M.O., CHEAH, M. and MADZUDZO, G. 2019. Context-aware anomaly detector for monitoring cyber attacks on automotive CAN bus. In Hof, H.-J., Fritz, M., Kraub, C. and Wasenmüller, O. (eds.). Proceedings of 2019 Computer science in cars symposium (CSCS 2019), 8 October 2019, Kaiserslautern, Germany. New York: ACM [online], article number 7. Available from: https://doi.org/10.1145/3359999.3360496

Automotive electronics is rapidly expanding. An average vehicle contains million lines of software codes, running on 100 of electronic control units (ECUs), in supporting number of safety, driver assistance and infotainment functions. These ECUs are... Read More about Context-aware anomaly detector for monitoring cyber attacks on automotive CAN bus..

Anomaly detection in network traffic using dynamic graph mining with a sparse autoencoder. (2019)
Presentation / Conference Contribution
JIA, G., MILLER, P., HONG, X., KALUTARAGE, H. and BAN, T. 2019. Anomaly detection in network traffic using dynamic graph mining with a sparse autoencoder. In Proceedings of 18th Institution of Electrical and Electronics Engineers (IEEE) international Trust, security and privacy in computing and communications conference, co-located with 13th IEEE international Big data science and engineering conference (TrustCom/BigDataSE), 5-8 August 2019, Rotorua, New Zealand. Piscataway: IEEE [online], pages 458-465. Available from: https://doi.org/10.1109/TrustCom/BigDataSE.2019.00068

Network based attacks on ecommerce websites can have serious economic consequences. Hence, anomaly detection in dynamic network traffic has become an increasingly important research topic in recent years. This paper proposes a novel dynamic Graph and... Read More about Anomaly detection in network traffic using dynamic graph mining with a sparse autoencoder..

Strengthening student engagement: evaluating the role of the digital skills agenda in higher education. (2019)
Presentation / Conference Contribution
LAWANI, A., SINGH, A., MCNEIL, A., DURACK, B. and KALUTARAGE, H. 2019. Strengthening student engagement: evaluating the role of the digital skills agenda in higher education. Presented at the 2019 Department for the Enhancement of Learning, Teaching and Access (DELTA) learning and teaching conference (LTC 2019): learning without borders, 2 May 2019, Aberdeen, UK.

Digital technology can contribute to all three areas of the TEF: teaching quality; learning environment; and student outcomes (Davies S, Mullan and Feldman 2017). Digital skills are helpful in designing enhanced and effective learning activities (Cop... Read More about Strengthening student engagement: evaluating the role of the digital skills agenda in higher education..