Skip to main content

Research Repository

Advanced Search

Dr Harsha Kalutarage's Outputs (11)

AI and cybersecurity 2021: proceedings of the 2021 Workshop on AI and cybersecurity (AI-Cybersec 2021) (2021)
Presentation / Conference Contribution
SANI, S. and KALUTARAGE, H. (eds.) 2021. AI and cybersecurity 2021: proceedings of the 2021 Workshop on AI and cybersecurity (AI-Cybersec 2021), co-located with the 41st Specialist Group on Artificial Intelligence international conference on artificial intelligence (SGAI 2021), 14 December 2021, [virtual event]. CEUR workshop proceedings, 3125. Aachen: CEUR-WS [online]. Available from: https://ceur-ws.org/Vol-3125/

This volume consists of the papers that were presented at the 1st International Workshop on Artificial Intelligence and Cyber Security, co-located with the 41st SGAI International Conference on Artificial Intelligence (AI-2021) on December 14th, 2021... Read More about AI and cybersecurity 2021: proceedings of the 2021 Workshop on AI and cybersecurity (AI-Cybersec 2021).

Improving intrusion detection through training data augmentation. (2021)
Presentation / Conference Contribution
OTOKWALA, U., PETROVSKI, A. and KALUTARAGE, H. 2021. Improving intrusion detection through training data augmentation. In Moradpoor, N., Elçi, A. and Petrovski, A. (eds.) Proceedings of 14th International conference on Security of information and networks 2021 (SIN 2021), 15-17 December 2021, [virtual conference]. Piscataway: IEEE [online], article 17. Available from: https://doi.org/10.1109/SIN54109.2021.9699293

Imbalanced classes in datasets are common problems often found in security data. Therefore, several strategies like class resampling and cost-sensitive training have been proposed to address it. In this paper, we propose a data augmentation strategy... Read More about Improving intrusion detection through training data augmentation..

Reasoning with counterfactual explanations for code vulnerability detection and correction. (2021)
Presentation / Conference Contribution
WIJEKOON, A. and WIRATUNGA, N. 2021. Reasoning with counterfactual explanations for code vulnerability detection and correction. In Sani, S. and Kalutarage, H. (eds.) AI and cybersecurity 2021: proceedings of the 2021 Workshop on AI and cybersecurity (AI-Cybersec 2021), co-located with the 41st Specialist Group on Artificial Intelligence international conference on artificial intelligence (SGAI 2021), 14 December 2021, [virtual event]. CEUR workshop proceedings, 3125. Aachen: CEUR-WS [online], pages 1-13. Available from: http://ceur-ws.org/Vol-3125/paper1.pdf

Counterfactual explanations highlight "actionable knowledge" which helps the end-users to understand how a machine learning outcome could be changed to a more desirable outcome. In code vulnerability detection, understanding these "actionable" correc... Read More about Reasoning with counterfactual explanations for code vulnerability detection and correction..

Memory efficient federated deep learning for intrusion detection in IoT networks. (2021)
Presentation / Conference Contribution
ZAKARIYYA, A. KALUTARAGE, H. and AL-KADRI, M.O. 2021. Memory efficient federated deep learning for intrusion detection in IoT networks. In Sani, S. and Kalutarage, H. (eds.) AI and cybersecurity 2021: proceedings of the 2021 Workshop on AI and cybersecurity (AI-Cybersec 2021), co-located with the 41st Specialist Group on Artificial Intelligence international conference on artificial intelligence (SGAI 2021), 14 December 2021, [virtual event]. CEUR workshop proceedings, 3125. Aachen: CEUR-WS [online], pages 85-99. Available from: http://ceur-ws.org/Vol-3125/paper7.pdf

Deep Neural Networks (DNNs) methods are widely proposed for cyber security monitoring. However, training DNNs requires a lot of computational resources. This restricts direct deployment of DNNs to resource-constrained environments like the Internet o... Read More about Memory efficient federated deep learning for intrusion detection in IoT networks..

FedSim: similarity guided model aggregation for federated learning. (2021)
Journal Article
PALIHAWADANA, C., WIRATUNGA, N., WIJEKOON, A. and KALUTARAGE, H. 2022. FedSim: similarity guided model aggregation for federated learning. Neurocomputing [online], 483: distributed machine learning, optimization and applications, pages 432-445. Available from: https://doi.org/10.1016/j.neucom.2021.08.141

Federated Learning (FL) is a distributed machine learning approach in which clients contribute to learning a global model in a privacy preserved manner. Effective aggregation of client models is essential to create a generalised global model. To what... Read More about FedSim: similarity guided model aggregation for federated learning..

TrustMod: a trust management module for NS-3 simulator. (2021)
Presentation / Conference Contribution
HAJAR, M.S., KALUTARAGE, H. and AL-KADRI, M.O. 2021. TrustMod: a trust management module for NS-3 simulator. In Zhao, L., Kumar, N., Hsu, R.C. and Zou, D. (eds.) Proceedings of 20th IEEE (Institute of Electrical and Electronics Engineers) International conference on Trust, security and privacy in computing and communications 2021 (IEEE TrustCom 2021), 20-21 October 2021, Shenyang, China: [virtual event]. Piscataway: IEEE [online], pages 51-60. Available from: https://doi.org/10.1109/TrustCom53373.2021.00025

Trust management offers a further level of defense against internal attacks in ad hoc networks. Deploying an effective trust management scheme can reinforce the overall network security. Regardless of limitations, however, security researchers often... Read More about TrustMod: a trust management module for NS-3 simulator..

Android mobile malware detection using machine learning: a systematic review. (2021)
Journal Article
SENANAYAKE, J., KALUTARAGE, H. and AL-KADRI, M.O. 2021. Android mobile malware detection using machine learning: a systematic review. Electronics [online], 10(13), article 1606. Available from: https://doi.org/10.3390/electronics10131606

With the increasing use of mobile devices, malware attacks are rising, especially on Android phones, which account for 72.2% of the total market share. Hackers try to attack smartphones with various methods such as credential theft, surveillance, and... Read More about Android mobile malware detection using machine learning: a systematic review..

Effective detection of cyber attack in a cyber-physical power grid system. (2021)
Presentation / Conference Contribution
OTOKWALA, U., PETROVSKI, A. and KALUTARAGE, H. 2021. Effective detection of cyber attack in a cyber-physical power grid system. In Arai, K. (ed) Advances in information and communication: proceedings of Future of information and communication conference (FICC 2021), 29-30 April 2021, Vancouver, Canada. Advances in intelligent systems and computing, 1363. Cham: Springer [online], 1, pages 812-829. Available from: https://doi.org/10.1007/978-3-030-73100-7_57

Advancement in technology and the adoption of smart devices in the operation of power grid systems have made it imperative to ensure adequate protection for the cyber-physical power grid system against cyber-attacks. This is because, contemporary cyb... Read More about Effective detection of cyber attack in a cyber-physical power grid system..

LTMS: a lightweight trust management system for wireless medical sensor networks. (2021)
Presentation / Conference Contribution
HAJAR, M.S., AL-KADRI, M.O. and KALUTARAGE, H. 2020. LTMS: a lightweight trust management system for wireless medical sensor networks. In Wang, G., Ko, R., Bhuiyan, M.Z.A. and Pan, Y. (eds.). Proceedings of 19th Institute of Electrical and Electronics Engineers (IEEE) Trust, security and privacy in computing and communication international conference 2020 (TrustCom 2020), 29 Dec 2020 - 1 Jan 2021, Guangzhou, China. Piscataway: IEEE [online], pages 1783-1790. Available from: https://doi.org/10.1109/TrustCom50675.2020.00245

Wireless Medical Sensor Networks (WMSNs) offer ubiquitous health applications that enhance patients' quality of life and support national health systems. Detecting internal attacks on WMSNs is still challenging since cryptographic measures can not pr... Read More about LTMS: a lightweight trust management system for wireless medical sensor networks..

A survey on wireless body area networks: architecture, security challenges and research opportunities. (2021)
Journal Article
HAJAR, M.S., AL-KADRI, M.O. and KALUTARAGE, H.K. 2021. A survey on wireless body area networks: architecture, security challenges and research opportunities. Computers and security [online], 104, article ID 102211. Available from: https://doi.org/10.1016/j.cose.2021.102211

In the era of communication technologies, wireless healthcare networks enable innovative applications to enhance the quality of patients’ lives, provide useful monitoring tools for caregivers, and allows timely intervention. However, due to the sensi... Read More about A survey on wireless body area networks: architecture, security challenges and research opportunities..

Resource efficient boosting method for IoT security monitoring. (2021)
Presentation / Conference Contribution
ZAKARIYYA, I., AL-KADRI, M.O. and KALUTARAGE, H. 2021. Resource efficient boosting method for IoT security monitoring. In Proceedings of 18th Institute of Electrical and Electronics Engineers (IEEE) Consumer communications and networking conference 2021 (CCNC 2021), 9-12 January 2021, [virtual conference]. Piscataway: IEEE [online], article 9369620. Available from: https://doi.org/10.1109/ccnc49032.2021.9369620

Machine learning (ML) methods are widely proposed for security monitoring of Internet of Things (IoT). However, these methods can be computationally expensive for resource constraint IoT devices. This paper proposes an optimized resource efficient ML... Read More about Resource efficient boosting method for IoT security monitoring..