Skip to main content

Research Repository

Advanced Search

Doctor Sheikh Islam


Numerical simulation of fluid flow, proppant transport and fracture propagation in hydraulic fractures for unconventional reservoirs. (2020)
Thesis
SURI, Y. 2020. Numerical simulation of fluid flow, proppant transport and fracture propagation in hydraulic fractures for unconventional reservoirs. Robert Gordon University, PhD thesis. Hosted on OpenAIR [online]. Available from: https://openair.rgu.ac.uk

The distribution of proppant injected in hydraulic fractures significantly affects fracture-conductivity and well-performance. The proppant transport and suspension in thin fracturing fluid used in unconventional reservoirs are considerably differe... Read More about Numerical simulation of fluid flow, proppant transport and fracture propagation in hydraulic fractures for unconventional reservoirs..

Effect of fracture roughness on the hydrodynamics of proppant transport in hydraulic fractures. (2020)
Journal Article
SURI, Y. ISLAM, S.Z. and HOSSAIN, M. 2020. Effect of fracture roughness on the hydrodynamics of proppant transport in hydraulic fractures. Journal of natural gas science and engineering [online], 80, article ID 103401. Available from: https://doi.org/10.1016/j.jngse.2020.103401

The effect of fracture roughness is investigated on proppant transport in hydraulic fractures using Joint Roughness Coefficient and a three-dimensional multiphase modelling approach. The equations governing the proppant transport physics in the fract... Read More about Effect of fracture roughness on the hydrodynamics of proppant transport in hydraulic fractures..

Proppant transport in dynamically propagating hydraulic fractures using CFD-XFEM approach. (2020)
Journal Article
SURI, Y., ISLAM, S.Z. and HOSSAIN, M. 2020. Proppant transport in dynamically propagating hydraulic fractures using CFD-XFEM approach. International journal of rock mechanics and mining sciences [online], 131, article ID 104356. Available from: https://doi.org/10.1016/j.ijrmms.2020.104356

Numerically modelling the fluid flow with proppant transport and fracture propagation together are one of the significant technical challenges in hydraulic fracturing of unconventional hydrocarbon reservoirs. The existing models either model the prop... Read More about Proppant transport in dynamically propagating hydraulic fractures using CFD-XFEM approach..

Proppant transport in dynamically propagating hydraulic fractures using CFD-XFEM approach. [Dataset] (2020)
Dataset
ISLAM, S., HOSSAIN, M. and SURI, Y. 2020. Proppant transport in dynamically propagating hydraulic fractures using CFD-XFEM approach. [Dataset]. Hosted on Mendeley Data [online]. Available from: https://doi.org/10.17632/sdzxzd9krm.1

The aim of this research was to find a dynamic and integrated numerical model that uses computational fluid dynamics (CFD) technique to model the fluid flow with proppant transport and Extended finite element method (XFEM) to model the fracture propa... Read More about Proppant transport in dynamically propagating hydraulic fractures using CFD-XFEM approach. [Dataset].

Numerical modelling of proppant transport in hydraulic fractures. (2020)
Journal Article
SURI, Y., ISLAM, S.Z. and HOSSAIN, M. 2020. Numerical modelling of proppant transport in hydraulic fractures. Fluid dynamics and materials processing [online], 16(2), pages 297-337. Available from: https://doi.org/10.32604/fdmp.2020.08421

The distribution of proppant injected in hydraulic fractures significantly affects the fracture conductivity and well performance. The proppant transport in thin fracturing fluid used during hydraulic fracturing in the unconventional reservoirs is co... Read More about Numerical modelling of proppant transport in hydraulic fractures..

Numerical fluid flow modelling in multiple fractured porous reservoirs. (2020)
Journal Article
SURI, Y., ISLAM, S.Z., STEPHEN, K., DONALD, C., THOMPSON, M., DROUBI, M.G. and HOSSAIN, M. 2020. Numerical fluid flow modelling in multiple fractured porous reservoirs. Fluid dynamics and materials processing [online], 16(2), pages 245-266. Available from: https://doi.org/10.32604/fdmp.2020.06505

This paper compares the fluid flow phenomena occurring within a fractured reservoir for three different fracture models using computational fluid dynamics. The effect of the fracture-matrix interface condition is studied on the pressure and velocity... Read More about Numerical fluid flow modelling in multiple fractured porous reservoirs..

CFD modelling of flow-induced vibration under multiphase flow regimes. (2020)
Thesis
ASIEGBU, N.M. 2020. CFD modelling of flow-induced vibration under multiphase flow regimes. Robert Gordon University [online], PhD thesis. Available from: https://openair.rgu.ac.uk

Internal multiphase flow-induced vibration (MFIV) in pipe bends poses serious problems in oil and gas, nuclear and chemical flow systems. The problems include: high amplitude displacement of the pipe structure due to resonance; fatigue failure due to... Read More about CFD modelling of flow-induced vibration under multiphase flow regimes..

Petrophysical and geomechanical characterization of a marginal (Wabi) field reservoir in north-central Niger Delta. (2019)
Thesis
ZORASI, C.B. 2019. Petrophysical and geomechanical characterization of a marginal (Wabi) field reservoir in north-central Niger Delta. Robert Gordon University [online], MRes thesis. Available from: https://openair.rgu.ac.uk

The aim of this study is to evaluate marginal field petrophysical and geomechanical parameters, and to develop a model for analysis of geomechanical problems, in order to mitigate stress-related issues in drilling, development and reservoir managemen... Read More about Petrophysical and geomechanical characterization of a marginal (Wabi) field reservoir in north-central Niger Delta..

Investigation of slug-churn flow induced transient excitation forces at pipe bend. (2019)
Journal Article
HOSSAIN, M., CHINENYE-KANU, N.M., DROUBI, G.M. and ISLAM, S.Z. 2019. Investigation of slug-churn flow induced transient excitation forces at pipe bend. Journal of fluids and structures [online], 91, article ID 102733. Available from: https://doi.org/10.1016/j.jfluidstructs.2019.102733

Numerical simulations of two-phase flow induced fluctuating forces at a pipe bend have been carried out to study the characteristics of multiphase flow induced vibration (FIV). The multiphase flow patterns and turbulence were modelled using the volum... Read More about Investigation of slug-churn flow induced transient excitation forces at pipe bend..

A new CFD approach for proppant transport in unconventional hydraulic fractures. (2019)
Journal Article
SURI, Y., ISLAM, S.Z. and HOSSAIN, M. 2019. A new CFD approach for proppant transport in unconventional hydraulic fractures. Journal of natural gas science and engineering [online], 70, article number 102951. Available from: https://doi.org/10.1016/j.jngse.2019.102951

For hydraulic fracturing design in unconventional reservoirs, the existing proppant transport models ignore the fluid leak-off effect from the fracture side wall and the effect of fracture roughness. In this paper, a model is proposed using three-dim... Read More about A new CFD approach for proppant transport in unconventional hydraulic fractures..