Skip to main content

Research Repository

Advanced Search

Professor John McCall's Outputs (66)

Limitations of benchmark sets and landscape features for algorithm selection and performance prediction. (2019)
Presentation / Conference Contribution
LACROIX, B. and MCCALL, J. 2019. Limitations of benchmark sets and landscape features for algorithm selection and performance prediction. In López-Ibáñe, M. (ed.) Proceedings of the 2019 Genetic and evolutionary computation conference (GECCO 2019) companion, 13-17 July 2019, Prague, Czech Republic. New York: Association for Computing Machinery [online], pages 261-262. Available from: https://doi.org/10.1145/3319619.3322051

Benchmark sets and landscape features are used to test algorithms and to train models to perform algorithm selection or configuration. These approaches are based on the assumption that algorithms have similar performances on problems with similar fea... Read More about Limitations of benchmark sets and landscape features for algorithm selection and performance prediction..

Simultaneous meta-data and meta-classifier selection in multiple classifier system. (2019)
Presentation / Conference Contribution
NGUYEN, T.T., LUONG, A.V., NGUYEN, T.M.V., HA, T.S., LIEW, A.W.-C. and MCCALL, J. 2019. Simultaneous meta-data and meta-classifier selection in multiple classifier system. In López-Ibáñez, M. (ed.) Proceedings of the 2019 Genetic and evolutionary computation conference (GECCO ’19), 13-17 July 2019, Prague, Czech Republic. New York: ACM [online], pages 39-46. Available from: https://doi.org/10.1145/3321707.3321770

In ensemble systems, the predictions of base classifiers are aggregated by a combining algorithm (meta-classifier) to achieve better classification accuracy than using a single classifier. Experiments show that the performance of ensembles significan... Read More about Simultaneous meta-data and meta-classifier selection in multiple classifier system..

A holistic metric approach to solving the dynamic location-allocation problem. (2018)
Presentation / Conference Contribution
ANKRAH, R., LACROIX, B., MCCALL, J., HARDWICK, A. and CONWAY, A. 2018. A holistic metric approach to solving the dynamic location-allocation problem. In Bramer, M. and Petridis, M. (eds.) Artificial intelligence xxxv: proceedings of the 38th British Computer Society's Specialist Group on Artificial Intelligence (SGAI) International conference on innovative techniques and applications of artificial intelligence (AI-2018), 11-13 December 2018, Cambridge, UK. Lecture notes in artificial intelligence, 11311. Cham: Springer [online], pages 433-439. Available from: https://doi.org/10.1007/978-3-030-04191-5_35

In this paper, we introduce a dynamic variant of the Location-Allocation problem: Dynamic Location-Allocation Problem (DULAP). DULAP involves the location of facilities to service a set of customer demands over a defined horizon. To evaluate a soluti... Read More about A holistic metric approach to solving the dynamic location-allocation problem..

An analysis of indirect optimisation strategies for scheduling. (2018)
Presentation / Conference Contribution
NEAU, C., REGNIER-COUDERT, O. and MCCALL, J. 2018. An analysis of indirect optimisation strategies for scheduling. In Proceedings of Institute of Electrical and Electronics Engineers (IEEE) congress on evolutionary computation (IEEE CEC 2018), 8-13 July 2018, Rio de Janeiro, Brazil. Piscataway, NJ: IEEE [online], article ID 8477967. Available from: https://doi.org/10.1109/CEC.2018.8477967

By incorporating domain knowledge, simple greedy procedures can be defined to generate reasonably good solutions to many optimisation problems. However, such solutions are unlikely to be optimal and their quality often depends on the way the decision... Read More about An analysis of indirect optimisation strategies for scheduling..

Tactical plan optimisation for large multi-skilled workforces using a bi-level model. (2018)
Presentation / Conference Contribution
AINSLIE, R., MCCALL, J., SHAKYA, S. and OWUSU, G. 2018. Tactical plan optimisation for large multi-skilled workforces using a bi-level model. In Proceedings of Institute of Electrical and Electronics Engineers (IEEE) congress on evolutionary computation (IEEE CEC 2018), 8-13 July 2018, Rio de Janeiro, Brazil. Piscataway, NJ: IEEE [online], article ID 8477701. Available from: https://doi.org/10.1109/CEC.2018.8477701

The service chain planning process is a critical component in the operations of companies in the service industry, such as logistics, telecoms or utilities. This process involves looking ahead over various timescales to ensure that available capacity... Read More about Tactical plan optimisation for large multi-skilled workforces using a bi-level model..

Performance analysis of GA and PBIL variants for real-world location-allocation problems. (2018)
Presentation / Conference Contribution
ANKRAH, R., REGNIER-COUDERT, O., MCCALL, J., CONWAY, A. and HARDWICK, A. 2018. Performance analysis of GA and PBIL variants for real-world location-allocation problems. In Proceedings of the 2018 IEEE congress on evolutionary computation (CEC 2018), 8-13 July 2018, Rio de Janeiro, Brazil. Piscataway, NJ: IEEE [online], article number 8477727. Available from: https://doi.org/10.1109/CEC.2018.8477727

The Uncapacitated Location-Allocation problem (ULAP) is a major optimisation problem concerning the determination of the optimal location of facilities and the allocation of demand to them. In this paper, we present two novel problem variants of Non-... Read More about Performance analysis of GA and PBIL variants for real-world location-allocation problems..

Iterated racing algorithm for simulation-optimisation of maintenance planning. (2018)
Presentation / Conference Contribution
LACROIX, B., MCCALL, J. and LONCHAMPT, J. 2018. Iterated racing algorithm for simulation-optimisation of maintenance planning. In Proceedings of the 2018 IEEE congress on evolutionary computation (CEC 2018), 8-13 July 2018, Rio de Janeiro, Brazil. Piscataway, NJ: IEEE [online], article number 8477843. Available from: https://doi.org/10.1109/CEC.2018.8477843

The purpose of this paper is two fold. First, we present a set of benchmark problems for maintenance optimisation called VMELight. This model allows the user to define the number of components in the system to maintain and a number of customisable pa... Read More about Iterated racing algorithm for simulation-optimisation of maintenance planning..

Predicting service levels using neural networks. (2017)
Presentation / Conference Contribution
AINSLIE, R., MCCALL, J., SHAKYA, S. and OWUSU, G. 2017. Predicting service levels using neural networks. In Bramer, M. and Petridis, M. (eds.) Artificial intelliegence XXXIV: proceedings of the 37th SGAI International innovative techniques and applications of artifical intelligence conference 2017 (AI 2017), 12-14 December 2017, Cambridge, UK. Lecture notes in computer science, 10630. Cham: Springer [online], pages 411-416. Available from: https://doi.org/10.1007/978-3-319-71078-5_35

In this paper we present a method to predict service levels in utility companies, giving them advanced visibility of expected service outcomes and helping them to ensure adherence to service level agreements made to their clients. Service level adher... Read More about Predicting service levels using neural networks..

Estimation of distribution algorithms for the multi-mode resource constrained project scheduling problem. (2017)
Presentation / Conference Contribution
AYODELE, M., MCCALL, J. and REGNIER-COUDERT, O. 2017. Estimation of distribution algorithms for the multi-mode resource constrained project scheduling problem. In Proceedings of the 2017 IEEE congress on evolutionary computation (CEC 2017), 5-8 June 2017, San Sebastian, Spain. New York: IEEE [online], article number 7969491, pages 1579-1586. Available from: https://doi.org/10.1109/CEC.2017.7969491

Multi-Mode Resource Constrained Project Problem (MRCPSP) is a multi-component problem which combines two interacting sub-problems; activity scheduling and mode assignment. Multi-component problems have been of research interest to the evolutionary co... Read More about Estimation of distribution algorithms for the multi-mode resource constrained project scheduling problem..

A random key based estimation of distribution algorithm for the permutation flowshop scheduling problem. (2017)
Presentation / Conference Contribution
AYODELE, M., MCCALL, J., REGNIER-COUDERT, O. and BOWIE, L. 2017. A random key based estimation of distribution algorithm for the permutation flowshop scheduling problem. In Proceedings of the 2017 IEEE congress on evolutionary computation (CEC 2017), 5-8 June 2017, San Sebastian, Spain. New York: IEEE [online], article number 7969591, pages 2364-2371. Available from: https://doi.org/10.1109/CEC.2017.7969591

Random Key (RK) is an alternative representation for permutation problems that enables application of techniques generally used for continuous optimisation. Although the benefit of RKs to permutation optimisation has been shown, its use within Estima... Read More about A random key based estimation of distribution algorithm for the permutation flowshop scheduling problem..

RK-EDA: a novel random key based estimation of distribution algorithm. (2016)
Presentation / Conference Contribution
AYODELE, M., MCCALL, J. and REGNIER-COUDERT, O. 2016. RK-EDA: a novel random key based estimation of distribution algorithm. In Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G. and Paechter, B. (eds.) Parallel problem solving from natuture: proceedings of the 14th International parallel problem solving from nature conference (PPSN XIV), 17-21 September 2016, Edinburgh, UK. Lecture notes in computer science, 9921. Cham: Springer [online], pages 849-858. Available from: https://doi.org/10.1007/978-3-319-45823-6_79

The challenges of solving problems naturally represented as permutations by Estimation of Distribution Algorithms (EDAs) have been a recent focus of interest in the evolutionary computation community. One of the most common alternative representation... Read More about RK-EDA: a novel random key based estimation of distribution algorithm..

Predictive planning with neural networks. (2016)
Presentation / Conference Contribution
AINSLIE, R., MCCALL, J., SHAKYA, S. and OWUSU, G. 2016. Predictive planning with neural networks. In Proceedings of the International joint conference on neural networks (IJCNN), 24-29 July 2016, Vancouver, Canada. Piscataway: IEEE [online], pages 2110-2117. Available from: https://doi.org/10.1109/IJCNN.2016.7727460

Critical for successful operations of service industries, such as telecoms, utility companies and logistic companies, is the service chain planning process. This involves optimizing resources against expected demand to maximize the utilization and mi... Read More about Predictive planning with neural networks..

BPGA-EDA for the multi-mode resource constrained project scheduling problem. (2016)
Presentation / Conference Contribution
AYODELE, M., MCCALL, J. and REGNIER-COUDERT, O. 2016. BPGA-EDA for the multi-mode resource constrained project scheduling problem. In Proceedings of the 2016 IEEE congress on evolutionary computation (CEC 2016), 24-29 July 2016, Vancouver, Canada. Piscataway, NJ: IEEE [online], article number 7744222, pages 3417-3424. Available from: https://doi.org/10.1109/CEC.2016.7744222

The Multi-mode Resource Constrained Project Scheduling Problem (MRCPSP) has been of research interest for over two decades. The problem is composed of two interacting sub problems: mode assignment and activity scheduling. These problems cannot be sol... Read More about BPGA-EDA for the multi-mode resource constrained project scheduling problem..

Generating easy and hard problems using the proximate optimality principle. (2015)
Presentation / Conference Contribution
MCCALL, J.A.W., CHRISTIE, L.A. and BROWNLEE, A.E.I. 2015. Generating easy and hard problems using the proximate optimality principle. In Silva, S. (ed.) Proceedings of the companion publication of the 2015 annual conference on genetic and evolutionary computation (GECCO Companion '15), 11-15 July 2015, Madrid, Spain. New York: ACM [online], pages 767-768. Available from: https://doi.org/10.1145/2739482.2764890

We present an approach to generating problems of variable difficulty based on the well-known Proximate Optimality Principle (POP), often paraphrased as similar solutions have similar fitness. We explore definitions of this concept in terms of metrics... Read More about Generating easy and hard problems using the proximate optimality principle..

Structural coherence of problem and algorithm: an analysis for EDAs on all 2-bit and 3-bit problems. (2015)
Presentation / Conference Contribution
BROWNLEE, A.E.I., MCCALL, J.A.W. and CHRISTIE, L.A. 2015. Structural coherence of problem and algorithm: an analysis for EDAs on all 2-bit and 3-bit problems. In Proceedings of the 2015 IEEE congress on evolutionary computation (CEC 2015), 25-28 May 2015, Sendai, Japan. Piscataway, NJ: IEEE [online], pages 2066-2073. Available from: https://doi.org/10.1109/CEC.2015.7257139

Metaheuristics assume some kind of coherence between decision and objective spaces. Estimation of Distribution algorithms approach this by constructing an explicit probabilistic model of high fitness solutions, the structure of which is intended to r... Read More about Structural coherence of problem and algorithm: an analysis for EDAs on all 2-bit and 3-bit problems..

Minimal walsh structure and ordinal linkage of monotonicity-invariant function classes on bit strings. (2014)
Presentation / Conference Contribution
CHRISTIE, L.A., MCCALL, J.A.W. and LONIE, D.P. 2014. Minimal walsh structure and ordinal linkage of monotonicity-invariant function classes on bit strings. In Igel, C. (ed.) Proceedings of the 2014 Genetic and evolutionary computation conference (GECCO 2014): a recombination of the 23rd International conference on genetic algorithms (ICGA-2014), and the 19th Annual genetic programming conference (GP-2014), 12-16 July 2014, Vancouver, Canada. New York: ACM [online], pages 333-340. Available from: https://doi.org/10.1145/2576768.2598240

Problem structure, or linkage, refers to the interaction between variables in a black-box fitness function. Discovering structure is a feature of a range of algorithms, including estimation of distribution algorithms (EDAs) and perturbation methods (... Read More about Minimal walsh structure and ordinal linkage of monotonicity-invariant function classes on bit strings..

Combining biochemical network motifs within an ARN-agent control system. (2013)
Presentation / Conference Contribution
GERRARD, C.E., MCCALL, J., MACLEOD, C. and COGHILL, G.M. 2013. Combining biochemical network motifs within an ARN-agent control system. In Jin, Y. and Thomas, S.A. (eds.) Proceedings of the 13th UK workshop on computational intelligence (UKCI 2013), 9-11 September 2013, Guildford, UK. New York: IEEE [online], article number 6651281, pages 8-15. Available from: https://doi.org/10.1109/UKCI.2013.6651281

The Artificial Reaction Network (ARN) is an Artificial Chemistry representation inspired by cell signaling networks. The ARN has previously been applied to the simulation of the chemotaxis pathway of Escherichia coli and to the control of limbed robo... Read More about Combining biochemical network motifs within an ARN-agent control system..

Partial structure learning by subset Walsh transform. (2013)
Presentation / Conference Contribution
CHRISTIE, L.A., LONIE, D.P. and MCCALL, J.A.W. 2013. Partial structure learning by subset Walsh transform. In Jin, Y. and Thomas, S.A. (eds.) Proceedings of the 13th UK workshop on computational intelligence (UKCI 2013), 9-11 September 2013, Guildford, UK. New York: IEEE [online], article number 6651297, pages 128-135. Available from: https://doi.org/10.1109/UKCI.2013.6651297

Estimation of distribution algorithms (EDAs) use structure learning to build a statistical model of good solutions discovered so far, in an effort to discover better solutions. The non-zero coefficients of the Walsh transform produce a hypergraph rep... Read More about Partial structure learning by subset Walsh transform..

Artificial chemistry approach to exploring search spaces using artificial reaction network agents. (2013)
Presentation / Conference Contribution
GERRARD, C.E., MCCALL, J., MACLEOD, C. and COGHILL, G.M. 2013. Artificial chemistry approach to exploring search spaces using artificial reaction network agents. In Proceedings of the 2013 IEEE congress on evolutionary computation (CEC 2013), 20-23 June 2013, Cancun, Mexico. New York: IEEE [online], article number 6557702, pages 1201-1208. Available from: https://doi.org/10.1109/CEC.2013.6557702

The Artificial Reaction Network (ARN) is a cell signaling network inspired representation belonging to the branch of A-Life known as Artificial Chemistry. It has properties in common with both AI and Systems Biology techniques including Artificial Ne... Read More about Artificial chemistry approach to exploring search spaces using artificial reaction network agents..

Adaptive dynamic control of quadrupedal robotic gaits with artificial reaction networks. (2012)
Presentation / Conference Contribution
GERRARD, C.E., MCCALL, J., COGHILL, G.M. and MACLEOD, C. 2012. Adaptive dynamic control of quadrupedal robotic gaits with artificial reaction networks. In Huang, T., Zeng, Z., Li, C. and Leung, C.S. (eds.) Proceedings of the 19th International conference on neural information processing (ICONIP 2012), 12-15 November 2012, Doha, Qatar. Lecture notes in computer science, 7663. Berlin: Springer [online], part I, pages 280-287. Available from: https://doi.org/10.1007/978-3-642-34475-6_34

The Artificial Reaction Network (ARN) is a bio-inspired connectionist paradigm based on the emerging field of Cellular Intelligence. It has properties in common with both AI and Systems Biology techniques including Artificial Neural Networks, Petri N... Read More about Adaptive dynamic control of quadrupedal robotic gaits with artificial reaction networks..