Skip to main content

Research Repository

Advanced Search

Outputs (144)

Fall prediction using behavioural modelling from sensor data in smart homes. (2019)
Journal Article
FORBES, G., MASSIE, S. and CRAW, S. 2020. Fall prediction using behavioural modelling from sensor data in smart homes. Artificial intelligence review [online], 53(2), pages 1071-1091. Available from: https://doi.org/10.1007/s10462-019-09687-7

The number of methods for identifying potential fall risk is growing as the rate of elderly fallers continues to rise in the UK. Assessments for identifying risk of falling are usually performed in hospitals and other laboratory environments, however... Read More about Fall prediction using behavioural modelling from sensor data in smart homes..

Knowledge driven approaches to e-learning recommendation. (2018)
Thesis
MBIPOM, B. 2018. Knowledge driven approaches to e-learning recommendation. Robert Gordon University, PhD thesis.

Learners often have difficulty finding and retrieving relevant learning materials to support their learning goals because of two main challenges. The vocabulary learners use to describe their goals is different from that used by domain experts in tea... Read More about Knowledge driven approaches to e-learning recommendation..

Improving e-learning recommendation by using background knowledge. (2018)
Journal Article
MBIPOM, B., CRAW, S. and MASSIE, S. 2021. Improving e-learning recommendation by using background knowledge. Expert systems [online], 38(7): artificial intelligence/EDMA 2017, article e12265. Available from: https://doi.org/10.1111/exsy.12265

There is currently a large amount of e-Learning resources available to learners on the Web. However, learners often have difficulty finding and retrieving relevant materials to support their learning goals because they lack the domain knowledge to cr... Read More about Improving e-learning recommendation by using background knowledge..

I've got a feeling: the effect of haptic information on the preferred location of purchase of guitars and stringed wooden instruments. (2017)
Thesis
PIRIE, E. 2017. I've got a feeling: the effect of haptic information on the preferred location of purchase of guitars and stringed wooden instruments. Robert Gordon University, PhD thesis.

This thesis develops technology adoption and sensory information literatures through an evaluation of antecedents to consumers purchase location intention of Musical Instruments (MI). With the unique factor of instrument heterogeneity MI e-retail sal... Read More about I've got a feeling: the effect of haptic information on the preferred location of purchase of guitars and stringed wooden instruments..

Understanding the ecology of the Personally Significant Learning Environment (PSLE): one year on. (2016)
Presentation / Conference Contribution
STEPHENS, M., PATTERSON, C., PRICE, A.M., SNELGROVE-CLARKE, E., WORK, F. and CHIANG, V.C.L. 2016. Understanding the ecology of the Personally Significant Learning Environment (PSLE): one year on. Presented at the 27th International networking for healthcare education conference (NET2016), 6-8 September 2016, Cambridge, UK.

Personal learning environments (PLE) have been shown to be critical in how students negotiate, manage and experience their learning. Understandings of PLEs are largely restricted by narrow definitions that focus on technology alone. The idea of a PLE... Read More about Understanding the ecology of the Personally Significant Learning Environment (PSLE): one year on..

Monitoring health in smart homes using simple sensors.
Presentation / Conference Contribution
MASSIE, S., FORBES, G., CRAW, S., FRASER, L. and HAMILTON, G. 2018. Monitoring health in smart homes using simple sensors. In Bach, K., Bunescu, R., Farri, O., Guo, A., Hasan, S., Ibrahim, Z.M., Marling, C., Raffa, J., Rubin, J. and Wu, H. (eds.) Proceedings of the 3rd International workshop on knowledge discovery in healthcare data (KDH), co-located with the 27th International joint conference on artificial intelligence and the 23rd European conference on artificial intelligence (IJCAI-ECAI 2018), 13 July 2018, Stockholm, Sweden. CEUR workshop proceedings, 2148. Aachen: CEUR-WS [online], pages 33-37. Available from: http://ceur-ws.org/Vol-2148/paper05.pdf

We consider use of an ambient sensor network, installed in Smart Homes, to identify low level events taking place which can then be analysed to generate a resident's profile of activities of daily living (ADLs). These ADL profiles are compared to bot... Read More about Monitoring health in smart homes using simple sensors..

Opinion context extraction for aspect sentiment analysis.
Presentation / Conference Contribution
BANDHAKAVI, A., WIRATUNGA, N., MASSIE, S. and LUHAR, R. 2018. Opinion context extraction for aspect sentiment analysis. In Proceedings of the 12th Association for the Advancement of Artificial Intelligence (AAAI) international conference on web and social media (ICWSM 2018), 25-28 June 2018, Palo Alto, USA. Palo Alto: AAAI Press [online], pages 564-567. Available from: https://www.aaai.org/ocs/index.php/ICWSM/ICWSM18/paper/view/17859

Sentiment analysis is the computational study of opinionated text and is becoming increasing important to online commercial applications. However, the majority of current approaches determine sentiment by attempting to detect the overall polarity of... Read More about Opinion context extraction for aspect sentiment analysis..

Informed pair selection for self-paced metric learning in Siamese neural networks.
Presentation / Conference Contribution
MARTIN, K., WIRATUNGA, N., MASSIE, S. and CLOS, J. 2018. Informed pair selection for self-paced metric learning in Siamese neural networks. In Bramer, M. and Petridis, M. (eds.) Artificial intelligence XXXV: proceedings of the 38th British Computer Society's Specialist Group on Artificial Intelligence (SGAI) International conference on innovative techniques and applications of artificial intelligence (AI-2018), 11-13 December 2018, Cambridge, UK. Lecture notes in computer science, 11311. Cham: Springer [online], pages 34-49. Available from: https://doi.org/10.1007/978-3-030-04191-5_3

Siamese Neural Networks (SNNs) are deep metric learners that use paired instance comparisons to learn similarity. The neural feature maps learnt in this way provide useful representations for classification tasks. Learning in SNNs is not reliant on e... Read More about Informed pair selection for self-paced metric learning in Siamese neural networks..

Risk information recommendation for engineering workers.
Presentation / Conference Contribution
MARTIN, K., LIRET, A., WIRATUNGA, N., OWUSU, G. and KERN, M. 2018. Risk information recommendation for engineering workers. In Bramer, M. and Petridis, M. (eds.) Artificial intelligence XXXV: proceedings of the 38th British Computer Society's Specialist Group on Artificial Intelligence (SGAI) International conference on innovative techniques and applications of artificial intelligence (AI-2018), 11-13 December 2018, Cambridge, UK. Lecture notes in computer science, 11311. Cham: Springer [online], pages 311-325. Available from: https://doi.org/10.1007/978-3-030-04191-5_27

Within any sufficiently expertise-reliant and work-driven domain there is a requirement to understand the similarities between specific work tasks. Though mechanisms to develop similarity models for these areas do exist, in practice they have been cr... Read More about Risk information recommendation for engineering workers..

Human activity recognition with deep metric learners.
Presentation / Conference Contribution
MARTIN, K., WIJEKOON, A. and WIRATUNGA, N. 2019. Human activity recognition with deep metric learners. In Kapetanakis, S. and Borck, H. (eds.) Proceedings of the 27th International conference on case-based reasoning workshop (ICCBR-WS19), co-located with the 27th International conference on case-based reasoning (ICCBR19), 8-12 September 2019, Otzenhausen, Germany. CEUR workshop proceedings, 2567. Aachen: CEUR-WS [online], pages 8-17. Available from: http://ceur-ws.org/Vol-2567/paper1.pdf

Establishing a strong foundation for similarity-based return is a top priority in Case-Based Reasoning (CBR) systems. Deep Metric Learners (DMLs) are a group of neural network architectures which learn to optimise case representations for similarity-... Read More about Human activity recognition with deep metric learners..

Developing a catalogue of explainability methods to support expert and non-expert users.
Presentation / Conference Contribution
MARTIN, K., LIRET, A., WIRATUNGA, N., OWUSU, G. and KERN, M. 2019. Developing a catalogue of explainability methods to support expert and non-expert users. In Bramer, M. and Petridis, M. (eds.) Artificial intelligence XXXVI: proceedings of the 39th British Computer Society's Specialist Group on Artificial Intelligence (SGAI) international Artificial intelligence conference 2019 (AI 2019), 17-19 December 2019, Cambridge, UK. Lecture notes in computer science, 11927. Cham: Springer [online], pages 309-324. Available from: https://doi.org/10.1007/978-3-030-34885-4_24

Organisations face growing legal requirements and ethical responsibilities to ensure that decisions made by their intelligent systems are explainable. However, provisioning of an explanation is often application dependent, causing an extended design... Read More about Developing a catalogue of explainability methods to support expert and non-expert users..

Towards a conversational agent for threat detection in the internet of things.
Presentation / Conference Contribution
MCDERMOTT, C.D., JEANNELLE, B. and ISAACS, J.P. 2019. Towards a conversational agent for threat detection in the internet of things. In Proceedings of the 2019 International Cyber science on cyber situational awareness, data analytics and assessment (Cyber SA): pioneering research and innovation in cyber situational awareness, 3-4 June 2019, Oxford, UK. Piscataway: IEEE [online], chapter 6. Available from: https://doi.org/10.1109/CyberSA.2019.8899580

A conversational agent to detect anomalous traffic in consumer IoT networks is presented. The agent accepts two inputs in the form of user speech received by Amazon Alexa enabled devices, and classified IDS logs stored in a DynamoDB Table. Aural anal... Read More about Towards a conversational agent for threat detection in the internet of things..

Assessing the clinicians’ pathway to embed artificial intelligence for assisted diagnostics of fracture detection.
Presentation / Conference Contribution
MORENO-GARCÍA, C.F., DANG, T., MARTIN, K., PATEL, M., THOMPSON, A., LEISHMAN, L. and WIRATUNGA, N. 2020. Assessing the clinicians’ pathway to embed artificial intelligence for assisted diagnostics of fracture detection. In Bach, K., Bunescu, R., Marling, C. and Wiratunga, N. (eds.) Knowledge discovery in healthcare data 2020: proceedings of the 5th Knowledge discovery in healthcare data international workshop 2020 (KDH 2020), co-located with 24th European Artificial intelligence conference (ECAI 2020), 29-30 August 2020, [virtual conference]. CEUR workshop proceedings, 2675. Aachen: CEUR-WS [online], pages 63-70. Available from: http://ceur-ws.org/Vol-2675/paper10.pdf

Fracture detection has been a long-standingparadigm on the medical imaging community. Many algo-rithms and systems have been presented to accurately detectand classify images in terms of the presence and absence offractures in different parts of the... Read More about Assessing the clinicians’ pathway to embed artificial intelligence for assisted diagnostics of fracture detection..

WEC: weighted ensemble of text classifiers.
Presentation / Conference Contribution
UPADHYAY, A., NGUYEN, T.T., MASSIE, S. and MCCALL, J. 2020. WEC: weighted ensemble of text classifiers. In Proceedings of 2020 Institute of Electrical and Electronics Engineers (IEEE) congress on evolutionary computation (IEEE CEC 2020), part of the 2020 (IEEE) World congress on computational intelligence (IEEE WCCI 2020) and co-located with the 2020 International joint conference on neural networks (IJCNN 2020) and the 2020 IEEE International fuzzy systems conference (FUZZ-IEEE 2020), 19-24 July 2020, Glasgow, UK [virtual conference]. Piscataway: IEEE [online], article ID 9185641. Available from: https://doi.org/10.1109/CEC48606.2020.9185641

Text classification is one of the most important tasks in the field of Natural Language Processing. There are many approaches that focus on two main aspects: generating an effective representation; and selecting and refining algorithms to build the c... Read More about WEC: weighted ensemble of text classifiers..

Locality sensitive batch selection for triplet networks.
Presentation / Conference Contribution
MARTIN, K., WIRATUNGA, N. and SANI, S. 2020. Locality sensitive batch selection for triplet networks. In Proceedings of the 2020 Institute of Electrical and Electronics Engineers (IEEE) International joint conference on neural networks (IEEE IJCNN 2020), part of the 2020 IEEE World congress on computational intelligence (IEEE WCCI 2020) and co-located with the 2020 IEEE congress on evolutionary computation (IEEE CEC 2020) and the 2020 IEEE International fuzzy systems conference (FUZZ-IEEE 2020), 19-24 July 2020, [virtual conference]. Piscataway: IEEE [online], article ID 9207538. Available from: https://doi.org/10.1109/IJCNN48605.2020.9207538

Triplet networks are deep metric learners which learn to optimise a feature space using similarity knowledge gained from training on triplets of data simultaneously. The architecture relies on the triplet loss function to optimise its weights based u... Read More about Locality sensitive batch selection for triplet networks..

Representing temporal dependencies in human activity recognition.
Presentation / Conference Contribution
FORBES, G., MASSIE, S., CRAW, S., FRASER, L. and HAMILTON, G. 2019. Representing temporal dependencies in human activity recognition. In Kapetanakis, S. and Borck, H. (eds.) Proceedings of the 27th International conference on case-based reasoning workshop (ICCBR-WS19), co-located with the 27th International conference on case-based reasoning (ICCBR19), 8-12 September 2019, Otzenhausen, Germany. CEUR workshop proceedings, 2567. Aachen: CEUR-WS [online], pages 29-38. Available from: http://ceur-ws.org/Vol-2567/paper3.pdf

Smart Homes offer the opportunity to perform continuous, long-term behavioural and vitals monitoring of residents, which may be employed to aid diagnosis and management of chronic conditions without placing additional strain on health services. A pro... Read More about Representing temporal dependencies in human activity recognition..

Representing temporal dependencies in smart home activity recognition for health monitoring.
Presentation / Conference Contribution
FORBES, G., MASSIE, S., CRAW, S., FRASER, L. and HAMILTON, G. 2020. Representing temporal dependencies in smart home activity recognition for health monitoring. In Proceedings of the 2020 Institute of Electrical and Electronics Engineers (IEEE) International joint conference on neural networks (IEEE IJCNN 2020), part of the 2020 IEEE World congress on computational intelligence (IEEE WCCI 2020) and co-located with the 2020 IEEE congress on evolutionary computation (IEEE CEC 2020) and the 2020 IEEE International fuzzy systems conference (FUZZ-IEEE 2020), 19-24 July 2020, [virtual conference]. Piscataway: IEEE [online], article ID 9207480. Available from: https://doi.org/10.1109/IJCNN48605.2020.9207480

Long term health conditions, such as fall risk, are traditionally diagnosed through testing performed in hospital environments. Smart Homes offer the opportunity to perform continuous, long-term behavioural and vitals monitoring of residents, which m... Read More about Representing temporal dependencies in smart home activity recognition for health monitoring..

Wifi-based human activity recognition using Raspberry Pi.
Presentation / Conference Contribution
FORBES, G., MASSIE, S. and CRAW, S. 2020. Wifi-based human activity recognition using Raspberry Pi. In Alamaniotis, M. and Pan, S. (eds.) Proceedings of Institute of Electrical and Electronics Engineers (IEEE) 32nd Tools with artificial intelligence international conference 2020 (ICTAI 2020), 9-11 Nov 2020, [virtual conference]. Piscataway: IEEE [online], pages 722-730. Available from: https://doi.org/10.1109/ICTAI50040.2020.00115

Ambient, non-intrusive approaches to smart home health monitoring, while limited in capability, are preferred by residents. More intrusive methods of sensing, such as video and wearables, can offer richer data but at the cost of lower resident uptake... Read More about Wifi-based human activity recognition using Raspberry Pi..

Case-based approach to automated natural language generation for obituaries.
Presentation / Conference Contribution
UPADHYAY, A., MASSIE, S. and CLOGHER, S. 2020. Case-based approach to automated natural language generation for obituaries. In Watson, I. and Weber, R. (eds.) Case-based reasoning research and development: proceedings of the 28th International conference on case-based reasoning research and development (ICCBR 2020), 8-12 June 2020, Salamanca, Spain [virtual conference]. Lecture notes in computer science, 12311. Cham: Springer [online], pages 279-294. Available from: https://doi.org/10.1007/978-3-030-58342-2_18

Automated generation of human readable text from structured information is challenging because grammatical rules are complex making good quality outputs difficult to achieve. Textual Case-Based Reasoning provides one approach in which the text from p... Read More about Case-based approach to automated natural language generation for obituaries..

An IoT based industry 4.0 architecture for integration of design and manufacturing systems.
Presentation / Conference Contribution
ANBALAGAN, A. and MORENO-GARCIA, C.F. 2021. An IoT based industry 4.0 architecture for integration of design and manufacturing systems. Materials today: proceedings [online], 46(17): proceedings of 3rd International conference on materials, manufacturing and modelling 2021 (ICMMM 2021), 19-21 March 2021, [virtual conference], pages 7135-7142. Available from: https://doi.org/10.1016/j.matpr.2020.11.196

This paper proposes an Internet of Things (IoT) based 5-stage Industry 4.0 architecture to integrate the design and manufacturing systems in a Cyber Physical Environment (CPE). It considers the transfer of design and manufacturing systems data throug... Read More about An IoT based industry 4.0 architecture for integration of design and manufacturing systems..